已知x、y、z是正实数,x+y+z=1 求证1/(1+x^2)+1/(1+y^2)+1/(1+z^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 10:49:19
已知x、y、z是正实数,x+y+z=1 求证1/(1+x^2)+1/(1+y^2)+1/(1+z^2)
x){}K+74Vqճ럭]tݼgS7ThWjW*

已知x、y、z是正实数,x+y+z=1 求证1/(1+x^2)+1/(1+y^2)+1/(1+z^2)
已知x、y、z是正实数,x+y+z=1 求证1/(1+x^2)+1/(1+y^2)+1/(1+z^2)<=27/10

已知x、y、z是正实数,x+y+z=1 求证1/(1+x^2)+1/(1+y^2)+1/(1+z^2)
由柯西不等式得:(1+1+1)(x^2+y^2+z^2)>=(x+y+z)^2=1
3(x^2+y^2+z^2)>=1
x^2+y^2+z^2>=1/3
所以 x^2>=1/9 ;y^2>=1/9 ;z^2>=1/9
所以 1/ (1+x^2)