y的二阶导+y=-sin x,怎样解这个微分方程?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:48:20
y的二阶导+y=-sin x,怎样解这个微分方程?
xݒr@_aLJv8G9t6YR"1xhS{S#Ƞm/x 7Pfқ9I7O&^Nh\hiϩ>~zv_\͙5p:sH[[n +

y的二阶导+y=-sin x,怎样解这个微分方程?
y的二阶导+y=-sin x,怎样解这个微分方程?

y的二阶导+y=-sin x,怎样解这个微分方程?
先求齐次解y''+y=0
r^2+1=0
r=正负i
y=Acosx+Bsinx
右端是齐次解的一部分
所以由待定系数法可以假设
y=Cxsinx+Dxcosx
代入原方程
y'=C(sinx+xcosx)+D(cosx-xsinx)
y''=C(cosx+cosx-xsinx)+D(-sinx-sinx-xcosx)
y''+y
=2Ccosx-2Dsinx=-sinx
2C=0
-2D=-1
C=0,D=1/2
所以
y=Acosx+Bsinx+(1/2)xcosx

收起