,.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 11:08:26
,.
xToVWHͱ L-oSxlmMX44$@0?’BH&iF/սSkJSR_};="˅gb8 d2/+pc2ϴ\r}=='d*\[_pikO?|  ԓՈ5%x 1ICq9$A>$$UxY$Y E CXL&eQ %MZ%8բ*1W}RjBM$1.ovQ\O/gN.im /vKxlZ=|Q'Klw~zW>+YsҼ2xͲ7D٬Y,)֭ev\ħyUHkm׹Â0h -PቺH>v3]"ݻ职 HyX/ݱNo%Vz.YqISfEKѨbmn}t].g] YeIt6@0ia@>@

,.

,.

,.
我暂且就认为“按强算子拓扑收敛”是指强收敛,即,(T_n)x按范数收敛到Tx,对任意的x成立.(好像有一种更强的,叫依范数收敛,就是T_n-T的算子范数收敛到0;还有一种更弱的,叫弱收敛,就是(T_n)x弱收敛到Tx,对任意x.如果你所说的收敛是另外两种中的一种,请告知)
现在对任给的x(属于E),(T_n)x收敛(就是在E_1中强收敛)到Tx,也就是||(T_n)x-Tx||(E_1中的范数)趋于0,那么(以下提到范数时,是哪个空间的,会自行明了,所以不再解释)
||(S_n)(T_n)x - STx||
=||(S_n)Tx - STx|| + ||(S_n) (T_n) x - (S_n) Tx||
其中第一项趋于0,因为Tx是固定的,下面说第二项,||(S_n) (T_n) x - (S_n) Tx||,为什么趋于0.
因为S_n强收敛到S,所以通过一致有界原理(也叫共鸣定理),可以说明S_n的算子范数一直有界,那么||(S_n) (T_n) x - (S_n) Tx|| <= M ||(T_n)x - Tx|趋于0,其中M就是||S_n||的界(这里这个||S_n||中用到的范数是L(E_1,E_2)里的范数).
这就证完了.挺乱,抱歉.你的另一个问题回答稍简单一些,但是一致有界原理仍然是关键.

过于 复杂了 祝你好运