(1!+2!+3!+...+n!)/n!..
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 04:00:49
x}
EgᆱzA9XQ@`()e|r(#Vcy<ⵕJ$Õnfy7ت.^!hS5
+%8+֙9"9²+o_]dP)
(1!+2!+3!+...+n!)/n!..
(1!+2!+3!+...+n!)/n!..
(1!+2!+3!+...+n!)/n!..
1*2-1+2*3-2+3*4-3……+n(n+1)-n=[1*2+2*3+3*4+…+n(n+1)]-(1+2+3+……+n)=1/3(1*2*3-0*1*2)+1/3(2*3*4-1*2*3)+…1/3[n*(n+1)(n+2)-(n-1)n(n+1)]-(1+2+3+……+n)
=1/3[n(n+1)(n+2)]-[(n+1)n]/2
=[n(n+1)(2n+1)]/6
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简(n+1)(n+2)(n+3)
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)...1=n
lim2^n +3^n/2^n+1+3^n+1
3(n-1)(n+3)-2(n-5)(n-2)
lim(n+3)(4-n)/(n-1)(3-2n)
lim(n^3+n)/(n^4-3n^2+1)
n(n+1)(n+2)(n+3)+1 因式分解
n(n+1)(n+2)(n+3)+1等于多少
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
lim(2^n+3^n)^1
(n趋向无穷)
级数n/(n+1)(n+2)(n+3)和是多少
n*1+n*2+n*3+n*4.求公式
判断n/(n+1)(n+2)(n+3)的收敛性