求不定积分:∫1/x(x^n+a)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:26:58
求不定积分:∫1/x(x^n+a)dx
x){Ɏާf=_iG=u6ԯШNLI*'B~  a Pq[ CDMt"~h.ů*HA(1hjC5'I BP_#1OSAK$ F֕WSQ$RUU& 3F 16`Z9V;V#cS#S$ *

求不定积分:∫1/x(x^n+a)dx
求不定积分:∫1/x(x^n+a)dx

求不定积分:∫1/x(x^n+a)dx
∫ 1/[x(x^n+a)] dx
= (1/a)∫ a/[x(x^n+a)] dx
= (1/a)∫ [(x^n+a)-x^n]/[x(x^n+a)] dx
= (1/a)∫ (x^n+a)/[x(x^n+a)] dx - (1/a)∫ x^n/[x(x^n+a)] dx
= (1/a)∫ 1/x dx - (1/a)∫ x^(n-1)/(x^n+a) dx
= (1/a)∫ 1/x dx - (1/a)∫ [x^(n-1+1)/(n-1+1)]/(x^n+a) dx
= (1/a)∫ 1/x dx - 1/(an) * ∫ d(x^n+a)/(x^n+a)
= (1/a)ln|x| - 1/(an) * ln|x^n+a| + C
= 1/(an) * ln|x^n/(x^n+a)| + C

∫1/x(x^n+a)dx=(1/na)ln[x^n/(x^n+a)]+c

23525