在△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(1,λsinA),向量n=(sinA,1+cosA),已知向量m∥向量n.(1)若λ=2,求角A的大小;(2)若b+c=(根号3)a,求λ的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:05:50
在△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(1,λsinA),向量n=(sinA,1+cosA),已知向量m∥向量n.(1)若λ=2,求角A的大小;(2)若b+c=(根号3)a,求λ的取值范围.
xWmOG+Hǭ*^Kg >T~kɹuݐR^* D=O XMT83/;3;dlu'X8rJko`i9-]h>9n!Z<ҐGu EM2^r [IZs;ѫ~[A]a%'a\SMʙpCr"QU vm]BXk@0Mt'0pƇc܅{AUHD|)bꀒ"*a&HFO#=gP|'LnEKa `_l (xMI@*iH?@ !0x%.ҳłppO=ZO 3H`Dbxb8p W v Ŷi7+Z' K:ߗx ONPꋅFHd$v#_i[ A*A2%

在△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(1,λsinA),向量n=(sinA,1+cosA),已知向量m∥向量n.(1)若λ=2,求角A的大小;(2)若b+c=(根号3)a,求λ的取值范围.
在△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(1,λsinA),向量n=(sinA,1+cosA),已知向量m∥向量n.
(1)若λ=2,求角A的大小;
(2)若b+c=(根号3)a,求λ的取值范围.

在△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(1,λsinA),向量n=(sinA,1+cosA),已知向量m∥向量n.(1)若λ=2,求角A的大小;(2)若b+c=(根号3)a,求λ的取值范围.
(1)由两向量平行则有:λ(sinA)*(sinA)=1*(1+cosA),整理得:λ=1/(1+cosA).易知为cosA的减函数.当λ=2时,cosA=-1/2,A=120°
(2)对b+c=√3a用正弦定理可得:sinB+sinC=√3sinA,并带入A=π-B-C,可得:
1>=cos[(B-C)/2]=√3sin(A/2)>0
从而得到:sin(A/2)

1、
由m\\n得
1xsinA-rsinA(1+cosA)=0
1-λ(1+cosA)=0
当λ=2时
cosA=1/2
A=45度
2、
对“b+c=根号3乘a”两边平方b^2+c^2+2bc=3a^2,
构造(b^2+c^2-a^2)/2bc=(2a^2-2bc)/2bc
既cosA=a^2/bc-...

全部展开

1、
由m\\n得
1xsinA-rsinA(1+cosA)=0
1-λ(1+cosA)=0
当λ=2时
cosA=1/2
A=45度
2、
对“b+c=根号3乘a”两边平方b^2+c^2+2bc=3a^2,
构造(b^2+c^2-a^2)/2bc=(2a^2-2bc)/2bc
既cosA=a^2/bc-1
因为bc<=[(b+c)/2]^2=3a^2/4
所以cosA=a^2/bc-1<=4/3-1=1/3
而由上题1-λ(1+cosA)=0
得λ=1/(1+cosA)>=1/(1+1/3)=3/4

收起

由正弦定理知BC&#47;sinA=AC&#47;sinB            =AC&#47;sin(2A)            =AC&#47;(2 sinA cosA)即BC=AC&#47;(2 cosA)故AC&#47;cosA=2BC                 =2又B=2A则0°&lt;A&lt;60°739即1&#47;2&lt;cosA&lt;1所以AC=2cosA的取值...

全部展开

由正弦定理知BC&#47;sinA=AC&#47;sinB            =AC&#47;sin(2A)            =AC&#47;(2 sinA cosA)即BC=AC&#47;(2 cosA)故AC&#47;cosA=2BC                 =2又B=2A则0°&lt;A&lt;60°739即1&#47;2&lt;cosA&lt;1所以AC=2cosA的取值范围为(1g 2)

收起

在△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(1,λsinA),向量n=(sinA,1+cosA),已知向量m∥向量n。(1).若λ=2,求角A的大小;(2)若b+c=(√3)a,求λ的取值范围。
(1)。∵向量m∥向量n,∴1/sinA=(λsinA)/(1+cosA),即有λsin²A=1+cosA,又已知λ=2,故得
2(1-cos²A)=...

全部展开

在△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(1,λsinA),向量n=(sinA,1+cosA),已知向量m∥向量n。(1).若λ=2,求角A的大小;(2)若b+c=(√3)a,求λ的取值范围。
(1)。∵向量m∥向量n,∴1/sinA=(λsinA)/(1+cosA),即有λsin²A=1+cosA,又已知λ=2,故得
2(1-cos²A)=1+cosA,即有2cos²A+cosA-1=(2cosA-1)(cosA+1)=0,A是三角形的一个内角,cosA+1
≠0,故必有2cosA-1=0,cosA=1/2,A=π/3;
(2)。由余弦定理得a²=b²+c²-2bccosA=(b+c)²-2bc(1+cosA)=3a²-2bc(1+cosA),
即有1+cosA=2a²/2bc=a²/bc;故cosA=(a²/bc)-1=(a²-bc)/bc;
λ=(1+coaA)/sin²A=(1+cosA)/(1-cos²A)=1/(1-cosA)=1/[1-(a²-bc)/bc]=bc/(2bc-a²)=1/[2-(a²/bc)]
由于bc≦(b+c)²/4=3a²/4,故a²/bc≧4/3,-a²/bc≦-4/3,2-a²/bc≦2-4/3=2/3;1/[2-a²/bc]≧3/2;
即λ=1/[2-a²/bc]≧3/2。即3/2≦λ<+∞,这就是λ的取直范围。

收起

在三角形ABC中角A.B.C所对的边分别为a.b.c ,若c/b 在△ABC中,角A,B,C所对的边分别为a,b,c,若(根号3b-c)cosA=acosC,则cosA= 在△ABC中,角A、B、C所对的边分别为 a、b、c ,若(√3b-c)cosA=acosc求cosA 在三角形ABC中,角A,B,C所对的边分别为a,b,c,若C=2B,则c/b为 在△ABC中,角A,B,C所对的边分别为a,b,c,若acosA=bsinB,则sinAcosA+cos²B= 高一三角函数 正与弦函数在△ABC中,角A,B,C所对的边分别为a,b,c,当a^2 △ABC中角A、B、C分别所对的边为a、b、c,且满足Cos B+Cos C=b/a +c/a,求证:△ABC为直角三角形△ABC中角A、B、C分别所对的边为a、b、c,且满足Cos B+Cos C=b/a +c/a, 求证:△ABC为直角三角形. 在三角形ABC中,角A,B,C所对的边分别为a,b,c 若C=2B求b分之c等于多少 在三角形ABC中,角A,B,C所对的边分别为abc,若b²+c²-a²=bc,则A= 三角形ABC中,角A,B,C所对的边分别为a,b,c,若c/b 三角形ABC中,角A、B、C所对的边分别为a、b、c,若c/b 在三角形ABC中,角ABC所对的边分别为abc,求证:a^2 -b^2/c^2=Sin(A+B)/SinC 在三角形ABC中,角A,B,C所对的边为a,b,c, 数学题 在△ABC中,角A,B,C所对的边分别为a,b,c.若b=4,向量BA×BC=8 ①求数学题 在△ABC中,角A,B,C所对的边分别为a,b,c.若b=4,向量BA×BC=8 ①求a²+c²的值 在三角形ABC中,角A,B,C所对的边分别为a,b,c,且1+tanA/tanb=2c/b求∠A 在三角形ABC中,角A,B,C所对的边分别为a,b,c,且1+tanA/tanb=2c/b,求∠A 在三角形ABC中,角A`B,C所对的边分别为a,b,c,已知a=2,c=3,求b等于多少? 在三角形ABC中,A.B.C所对的边分别为a.b.c,且bCOSc+1/2c=a.(1)求角B