设x<y<0,试比较(x²+y²)(x-y)与(x²-y²)(x+y)的大小.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 16:04:56
xJ@_ HB:&fi^D,ḪT
BV
nJ
}&5]<3g4ot ̜3s.:Ӑ%%Ϫƽq4$A-/sxI ¾I#@C|Bwb]T6_25QF(LM!F""vLwa!]\\2ʩ%WcޣNƝZ Fo954]GJ#:'W7mvCsZAH~\Gck^Q|Ԫ|˵czmU4ְ
[)ԅm)^H@E|Dps$8@99tD!B L<Ռύ4f/&<xI(TflV0%
设x<y<0,试比较(x²+y²)(x-y)与(x²-y²)(x+y)的大小.
设x<y<0,试比较(x²+y²)(x-y)与(x²-y²)(x+y)的大小.
设x<y<0,试比较(x²+y²)(x-y)与(x²-y²)(x+y)的大小.
(x²+y²)(x-y)-(x²-y²)(x+y)
=x³-x²y+xy²-y³-(x³+x²y-xy²-y³)
=-2x²y+2xy²
=-2xy(x-y)
因为
x
x-y<0
xy>0
所以
(x²+y²)(x-y)-(x²-y²)(x+y)>0
即
(x²+y²)(x-y)>(x²-y²)(x+y)
后面那个大
(x²+y²)(x-y)-(x²-y²)(x+y)
=(x-y)[(x²+y²)-(x+y)²]
=-2xy(x-y)
x
所以-2xy(x-y)>0
所以
(x²+y²)(x-y)>(x²-y²)(x+y)
(x^2--y^2)(x+y)=(x^2+y^2+2xy)(x--y)
因为 x小于y小于0,
所以 xy大于0,x--y小于0,
所以 x^2+y^2小于x^2+y^2+2xy,
(x^2+y^2)(x--y)大于(x^2+y^2+2xy)(x--y)
即: (x^2+y^2)(x--y)大于(x^2--y^2)(x+y)。