show that Fibonacci numbers satisfy the recurrence relation fn=5f(n-4)+3f(n-5) for n=5,6,7...,together with the initial conditions f0=0,f1=1,f2=1,f3=2,f4=3.use this recurrence relation to show that f5n is divisible by 5,for n=1,2,3...注:fibonacci

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 23:27:18
show that Fibonacci numbers satisfy the recurrence relation fn=5f(n-4)+3f(n-5) for n=5,6,7...,together with the initial conditions f0=0,f1=1,f2=1,f3=2,f4=3.use this recurrence relation to show that f5n is divisible by 5,for n=1,2,3...注:fibonacci
xSR0-D A&fe! V 3).4@CaHB  &C;!ұdg/6Lݳ񕮮=(Edel\,-j[t 5djXN.`2 d:OHb&,~% l/5mEݞ L<lV],D)LjSE~R鴚J,Xѭ tnV[zv^C%Dp&09<7,YsIQ"ˠғcǸ(j⊌0; J 5mDTrw0&XК#Y-̇ػD~):5TZ/Ϯ@Ytv7FGMP,.{y+1/}vN;,C9K, o:A^vwz=يPc$!+-?| r{^=?;wI+a3n/݂oxM[NUQ{a(_u

show that Fibonacci numbers satisfy the recurrence relation fn=5f(n-4)+3f(n-5) for n=5,6,7...,together with the initial conditions f0=0,f1=1,f2=1,f3=2,f4=3.use this recurrence relation to show that f5n is divisible by 5,for n=1,2,3...注:fibonacci
show that Fibonacci numbers satisfy the recurrence relation fn=5f(n-4)+3f(n-5) for n=5,6,7...,together with the initial conditions f0=0,f1=1,f2=1,f3=2,f4=3.use this recurrence relation to show that f5n is divisible by 5,for n=1,2,3...
注:fibonacci number满足fn=f(n-1)+f(n-2)

show that Fibonacci numbers satisfy the recurrence relation fn=5f(n-4)+3f(n-5) for n=5,6,7...,together with the initial conditions f0=0,f1=1,f2=1,f3=2,f4=3.use this recurrence relation to show that f5n is divisible by 5,for n=1,2,3...注:fibonacci
fn=f(n-1)+f(n-2)=f(n-2)+2f(n-3)+f(n-4)
=f(n-3)+f(n-4)+2f(n-3)+f(n-4)=3f(n-3)+2f(n-4)=3(f(n-4)+f(n-5))+2f(n-4)=5f(n-4)+3f(n-5)
归纳法证明,当n=1时,f5=5,5整除f5,命题成立,假设命题对任意n成立,下面考虑n+1时的情况,利用上面等式有
f5(n+1)=f(5n+5)=5f(5n+1)+3f(5n)
由归纳法假设上式右边第2项被5整除,第1项含有因子5,故f5(n+1)也能被5整除,完成归纳法证明,故对任意n,fn能被5整除.

与最初一起表示,斐波纳契数字满足递归关系fn=5f (n-4) +3f (n-5) n=5,6,7的…,适应f0=0, f1=1, f2=1, f3=2, f4=3.use这个递归关系为n=1,2,3表示, f5n由5是可分的,…
注:fibonacci number满足fn=f (n-1) +f (N2)