请问这怎么证……
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:36:41
请问这怎么证……
请问这怎么证……
请问这怎么证……
.把定义域里面2改成-2就按我这样.不然题目有问题
这题都有问题,分母不能为0,它的定义域都搞错的,做一个250的错题有意思么?
(1)利用函数单调性的定义
设x1>x2>2
f(x1)-f(x2)=x1+2/x1-x2-2/x2
=x1-x2-(2/x2-2/x1)
=(x1-x2)-2(x1-x2)/x1x2
=(1-2/x...
全部展开
(1)利用函数单调性的定义
设x1>x2>2
f(x1)-f(x2)=x1+2/x1-x2-2/x2
=x1-x2-(2/x2-2/x1)
=(x1-x2)-2(x1-x2)/x1x2
=(1-2/x1x2)(x1-x2)
因为x1>x2>2
所以x1-x2>0,x1x2>2则2/x1x2 <1,则1-2/x1x2>0
所以f(x1)-f(x2)>0
所以f(x)在(负无穷,2)上单调增
同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦
收起
有难度
题目有误,题目中的2应为-2
证:
设x1<x2<-2,则
f(x2)-f(x1)
=x2/(x2+2)-x1/(x1+2)
=(2x2-2x1)/[(x1+2)(x2+2)]
=2(x2-x1)/[(x1+2)(x2+2)]
∵x1<x2<-2
∴x2-x1>0
x1+2,x2+2<0
∴f(x2)-f(x1)>0<...
全部展开
题目有误,题目中的2应为-2
证:
设x1<x2<-2,则
f(x2)-f(x1)
=x2/(x2+2)-x1/(x1+2)
=(2x2-2x1)/[(x1+2)(x2+2)]
=2(x2-x1)/[(x1+2)(x2+2)]
∵x1<x2<-2
∴x2-x1>0
x1+2,x2+2<0
∴f(x2)-f(x1)>0
f(x2)>f(x1)
∴f(x)在(-∞,-2)单调递增
望采纳,O(∩_∩)O谢谢
收起
楼主题错了吧,应该证 负无穷到-2上单调递增
证明: 你上面是不是应该是(-∝,-2)
接你上面的
f(X2)-f(X1)=X2/(X2+2)-X1/(X1+2)=2(X2-X1)/(X2+2)(X1+2)
因为x1,x2∈(-∝,-2)
x1
所以f(X2)-f(X1)>0
可得 函数在(-∝,-2)上单调递增
你的这个区间有问题,x不能为-2,应该是(--,-2)吧?
按照递增函数的定义进行证明。
任意取 x1,x2属于(--,-2),其中x1
f(x1)-f(x2)=x1/(x1+2)--x2/(x2+2)=2(x1-x2)/(x1+2)(x2+2)
因为x1
全部展开
你的这个区间有问题,x不能为-2,应该是(--,-2)吧?
按照递增函数的定义进行证明。
任意取 x1,x2属于(--,-2),其中x1
f(x1)-f(x2)=x1/(x1+2)--x2/(x2+2)=2(x1-x2)/(x1+2)(x2+2)
因为x1
收起