三角形ABC中,AB=根号3,AC=1,tanB=(根号11)/5,求sin(C-B)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:52:44
三角形ABC中,AB=根号3,AC=1,tanB=(根号11)/5,求sin(C-B)
xTN@Lچ& +7H3J#F. VT7~}િ(7msϹNSzxМ},:D~X24l0P=ҼӯW6JcHk[h):U7f|GBd4(H+S41!1x\kKaCS4RNkwc=ڡWu6gv58?_*M"%D-e8S:irHrd EiyF:)N h"=ߌ;)*]{YZ@ +%)bZ@њ,Ub$cB?Kl3}Kg⢏jفg|*+~TkS.(71ÌSdEB?8ͪ5uG'Յ5xdS>(

三角形ABC中,AB=根号3,AC=1,tanB=(根号11)/5,求sin(C-B)
三角形ABC中,AB=根号3,AC=1,tanB=(根号11)/5,求sin(C-B)

三角形ABC中,AB=根号3,AC=1,tanB=(根号11)/5,求sin(C-B)
tanB=sinB/cosB=(根号11)/5 1)
sinB^2+cosB^2=1 2)
联立1),2),得
sinB=(根号11)/6,cosB=5/6
由正弦定理
AC:AB=sinB:sinC
sinC=[(根号3*根号11)/6]/1=(根号33)/6
cosC=(根号3)/6或(-根号3)/6
sin(C-B)=sinCcosB-cosCsinB
=[(根号33)/6]*(5/6)-[(根号3)/6*(根号11)/6]
=(根号33)/9
或sin(C-B)=sinCcosB-cosCsinB
=[(根号33)/6]*(5/6)-[-(根号3)/6*(根号11)/6]
=(根号33)/6

tanB=(根号11)/5,那么sinB=(根号11)/6,cosB=5/6
由正弦定理得sinC=(根号11)/6×根号3=(根号33)/6
那么cosC=(根号3)/6
sin(C-B)=sinCcosB-cosCsinB=(根号33)/9

证明;tanB=(根号11)/5那么sinB=(根号11)/6,cosB=5/6
由正弦定理得sinC=(根号11)/6×根号3=(根号33)/6
sin(C-B)=sinCcosB-cosCsinB=(根号33)/9

证明:
1、tanB=(根11)/5那么sinB=(根11)/6,cosB=5/6
2、由正弦定理得sinC=(根11)/6×号3=(根33)/6
3、sin(C-B)=sinCcosB-cosCsinB=(根33)/9
所以结果为:(根33)/9