判断下列方程有几个实解2^x+x²=0(1/2)^x-2=-1/2x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 12:51:47
xRn`~J)u'z^ K6ꊱxJ@%hLIԄ){#nDĤ<>O)9:'KZV5"$&f*VJ98Yeu{BPۘ Y?,+%1 ;ᘪpt4R10QӸ{BIGiR{'$봥EׂEt;q&gΞ9~tm)<u.vϲޣ^)W7 ULLJ6Z-:B|C7V̫˳&z57VEW[&rU"
qs<ŵ"pMHJ5F- ++y)s//U*(S80ZU+zBlQ
e6rlԝ;qnFANdU4?DΩ?0tB ٰVlt2
!wmw-ќp0
n@t)sia`b^z8
判断下列方程有几个实解2^x+x²=0(1/2)^x-2=-1/2x
判断下列方程有几个实解
2^x+x²=0
(1/2)^x-2=-1/2x
判断下列方程有几个实解2^x+x²=0(1/2)^x-2=-1/2x
2^x+x²=0
x²=-2^x
∵2^x>0
∴-2^x<0
而x²≥0
无解
(2)
(1/2)^x-2=-1/2x
(1/2)^x恒过(0,1)
∴y=(1/2)^x-2恒过(0,-1)
y=-1/2x恒过(0,0),且是减函数
所以有2交点,即2个解
(1)、x∈R,——》2^x>0,x^2>=0,
——》2^x+x^2>0,
——》方程2^x+x^2=0,无实数解;
(2)、通过作图y=(1/2)^x与y=2-x/2,图像有两个交点,
所以方程(1/2)^x-2=-1/2x,有两个实数解。