1×2×3×4×····×141×142的积中,因数3的个数一共有几个
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 04:32:04
xSN@U8*aGאͣRW!%ڦ5CmDyD< $~D`Vp7Y!`uduspt 2?(W4l66xZy _vVM2Ox>xz.9tOhrς0)>
M̤bAAR
A&"%bP-DTDI &A%`
"BH#J0
p/2`E)z U)B4J$(cAIZH3ч&_zXݪ*$ojN}m@XU6\Yv`,v˦fgmUF*77q &{.2h}`Ex1I.U]y}QG~я_
Q>SDGl'O/O''?2% SZHfFy(:yWN@S.H*w<;n[Z3] n
@v}nE+AG˥'.h*IRY7LW>
o$-xsMv{םD qܝ)-zT{k/H
1×2×3×4×····×141×142的积中,因数3的个数一共有几个
1×2×3×4×····×141×142的积中,因数3的个数一共有几个
1×2×3×4×····×141×142的积中,因数3的个数一共有几个
是不是存在多少个因数3,如果是的话应该是每隔一个3是可以整除3的.
3、6、9..138、141.
每一个除3得到的个数是1、2、3..46、47
相加:1+2+3+.+47=1128
基本概念题,因数的定义:假如整数n除以m,结果是无余数的整数,那么我们称m就是n的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称n为m的倍数。
1×2×3×4×····×141×142的积除以3后,其结果只有一个,为1×2×4×····×141×142。...
全部展开
基本概念题,因数的定义:假如整数n除以m,结果是无余数的整数,那么我们称m就是n的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称n为m的倍数。
1×2×3×4×····×141×142的积除以3后,其结果只有一个,为1×2×4×····×141×142。
收起
1×2×3×4×····×141×142的积中,因数3的个数一共有几个
1 2 3 4 ·····7 ·······10 ········?1 3 5 7 ·····?······?··········290 1 4 9 ·····?······?··········?
8+11+14+17+20+·······+305 数学计算题.呜呜呜1+2+3+4+···················+98+99+100+99+98+···············+3+2+1
俗语和名句的填空1······,自知之明.2······,行必果.3工欲善其事,······.4临渊羡鱼,······.5非学无以广才,······.6······,福兮祸之所伏.7项庄舞剑,······.8······,人以群
急·····················1+2+3+...+999=?
2[4/3y—(2/3y—1/2)]=3/4y急·································!1
证明1·3·5·····(2n-1)/2·4·6·····2n
观察下列三角形数表其中从第二行起每行的每一个数为其肩膀上两树之和则该表的最后一个数是?1 2 3 4 5 6 7 8················ 97 98 99 100 3 5 7··························
数列 1/2,3/2,1/3 ,4/3,·········1/n+1,n+2/n+1,·········是否有极限?
1+2++3+··········+10000=
1+2+3+4·······+98+99等于多少
全部属于裸子植物的是 1卷柏 2侧柏 3银杏 4刺槐 5苏铁 6梧桐 7云杉 8贯从 9珙桐 A1237 B2357 C2379 D1358贯从是贯众·······························
2011红领巾快乐数独答案一2·····4·9·631·4·8·8··97··3··3··2·95···95·86···15·3··7··9··47··5·7·3·182·3·4·····7二7·1·8·3·····413·6·2·6···4·8·8·5·1·2·61·····94·2·9·4·7·8·
带有数字的四字词语按顺序1···2···3···4···5···6···7···8···9···10···祝福语
1+2+3+4+5····+50
序列 1 2 3 4 5 6 ······ n 对应的数 1 3 6 10 21······?
把1 9填入81格方框,不能重复· · 4 · · 5 · 6 ·9 · · 3 · · · 5 17 · · 6 · · · · 3· · 9 · 1 6 · 4 ·· 2 · 4 · · · 8 ·· 4 · 7 · · 5 · ·5 · · · · 7 · · 84 1 · · · 8 · · 5· 8 · 9 · · 6 · 4
计算1/(1*4)+1/(4*7)+1/(7*10)+------+1/(97*100)································································································