怎么把数学学到最好?

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 20:03:20
怎么把数学学到最好?
xZR#I4Y~HP@@(P˿dDPB>ۘUH??϶؎ue ?^\˟{J<=׻Gd{ 3 r=9t 6wb>nϤ`˕ -nǓn$]^?s0mLgomU{qdn@ҿK9LG sa܋/IxNT^!AZKïOqx4ƴ`8l}7qN/mgx~dUiS΍Sl潼b[v-|VbCq+O>m}{&L'iOܢ޽-rrlO( <ֳypkU=ՊNIzTIGQtT^!1,Vs /qضm۹PŰ{Z.x }`Oq䒾΍}\ >KW^VFTWa`gfԇ\CS[~ V9lӻUq8d}.9W0_x'mIU"[߁+Q.le#uxAtQz1i`0@", e)FbxG1 xzznKȼ Ee Xm'_X:1ݤ863{֞Cm@L<4mE]зt9__:4OfrcO}䬎{e ҄vR?2Uܞ^K!  G{׋?O:Ź4WJ\VDu:v#'V= ~Q7>pu)PLd{uzzݪ og'{.nHe;"T!f ^*/"i_R7yL#F{D)4 O^~`fmjG NFF$PO]/LzҮ$^VckHRNlwA "RibE@pl ;mGL5kbUߥiԏ4rT'șsSyM1A9J2o%]D}}2kb Qq,ىA-oOH5jڑ7ކB,Rn'6p,<Ψ@uv5KX q֑ GgpX 8 *7{d%:%X9Z2xÅXn&@OW^I*^> Wfʹ ?l _úvԅhf$ $|Y7$@f˄o&wVPTZexf1q;M T K^hG~* Yu:my3j/e@pj58YoIԁ@@o9]IDbD^bb5(x;v0àV$m0|%.ƿBw# fQm=0`Q:zřSFhB$ !(72LsNA!J= ٳVaH'zH >@\3puF)4^%|$Bhs_/7)PBqTͰy\ rYU&+b@S!0W-DIRq8HwVKG%&\Yo݄592ǰL2?RI|jG N^ ĄI5]H YlS4AΖX7P ؞zuxrEۦ o/}ql;A-=dJR:^uY|N^ֈY2Igxlq @f~M*/.`};Afʀ&4Izk@mE0):[34E{i4@MbB|w!+N~NPӭt WIL`2; kTd񂴎EڧJRmqA{DҍZ]orud")@kt4 `CHJt!<U O_ԝP̱toLk+~ꐅ?N'hRt_!Y*@++ •Bws:y,eAǪI,?SR`bktG`-ӂv_~k΃j<߃f] B#y ngweUqyL8 ^+T@0;/?t2ab/aW*u":rNV-ьI)r(±Zy *f6<ݾdHwG֋- VgsG[I82G`d(F|B;n^я$igt؛a$B~:ن)Af;f7JH- X 11hȴJBLO*wi8>Mek꽴bc v4r%J9~@o\{ Lnx7g?uV(>V8]tfNwwHZ_)Lλz̏ɦy6tH[lKrQ'_nh[] iu,jINv7*Mk1葉iJt/bk 7)8/Ӣp %+[s:h0km?m3K@0B-Ոd2eyTbzn#5)9̝/Kw[м0\G<g`q_k Owטm3ۺV{ve\ܼk,['7YÜ;,?7 d:-t".0V6 pSDS~5UE6ЧI!rl*] ϳ W?tz""^gp *ߚ `?Uh1:҆5yo @)* ^rˆ %~p/](uQG.nlnal}7հ%<d$SCG* ZV`9eVrǛ|W3wg9ڵDXc=pjԑZ-̺2Y_qeiaӖ+"|TD/Lczq+we_:zZy` ɟ~VJ|`,6~AHg 13B.lM\ e!Y/.͎m:yI.*,|U'u*ܭ<:N4B"(8?{ء=)NE̽:Nfs@c$m=ܵw3ΏXW>@ύ+uzIIޟɛ?mAV6?;-aߥ)~C*<{OQ"4`*y|J:A1K!?b~m

怎么把数学学到最好?
怎么把数学学到最好?

怎么把数学学到最好?
学习数学不仅要有强烈的学习愿望和学习热情,而且还要有科学的学习方法,才可能把数学学好.从分析数学学习活动可知,学习方法既受课堂教学的制约,又具有自身的一些特点.所以,我们一方面提出与课堂教学相配合的学习方法,另一方面又根据数学学习的自身特点,概括出一些特殊的学习方法. 一 预习、听课、复习、作业的方法 与数学课堂教学相适应的学习方法,就是预习、听课、复习、作业的方法等的基本方法. 1、预习的方法 预习是上课前对即将要上的数学内容进行阅读,了解其梗概,做到心中有数,以便于掌握听课的主动权.预习是独立学习的尝试,对学习内容是否正确理解,能否把握其重点、关键,洞察到隐含的思想方法等,都能及时在听课中得到检验、加强或矫正,有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环. 数学具有很强的逻辑性和连贯性,新知识往往是建立在旧知识的基础上.因此,预习时就要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时采取措施补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件. 预习的方法,除了回忆或温习学习新内容所需的旧知识(或预备知识)外,还应该了解基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里,等等.预习时,一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或弄不懂的地方与问题,最后确定听课时要解决的主要问题或打算,以提高听课的效率.在时间的安排上,预习一般放在复习和作业之后进行,即做完功课后,把下次课要学的内容看一遍,其要求则根据当时具体情况灵活掌握.如果时间允许,可以多思考一些问题,钻研得深入一些,甚至可做做练习题或习题;时间不允许,可以少一些问题,留给听课去解决的问题就多一些,不必强求一律. 2、听课的方法 听课是学习数学的主要形式.在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数学知识,否则事倍功半,难以提高效率.所以听课是学好数学的关键. 听课的方法,除在预习中明确任务,做到有针对性地解决符合自己的问题外,还要集中注意力,把自己思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特别要从中学习数学思维的方法,如观察、比较、分析、综合、归纳、演绎、一般化、特殊化等,就是如何运用公式、定理,了解其中隐含着的思想方法. 听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,鉴别哪些知识已经听懂,哪些还有疑问或有新的问题,并勇于提出自己的看法.如果课内一时不可能解决,就应把疑问或问题记下,留待自己去解决或请教老师,并继续专心听老师讲课,切勿因一处没有听懂,思维就停留在这里,而影响后面的听课.一般,听课时要把老师讲课的要点、补充的内容与方法记下,以备复习之用. 3、复习的方法 复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的.复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问.对学习的内容务求弄懂,切实理解掌握.如果有的问题经过较长时间的思索,还得不到解决,则可与同学商讨或请老师解决. 复习还要在理解教材的基础上,沟通知识间的内在联系,找出其重点、关键,然后提炼概括,组成一个知识系统,从而形成或发展扩大数学认知结构. 复习是对知识进行深化、精炼和概括的过程,它需要通过手和脑积极主动地开展活动才能达到,因此,在这个过程中,提供了发展和提高能力的极好机会.数学的复习,不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,怎样应用它等. 4、作业的方法 数学学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力.由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,所以它对于发现存在的问题,困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决. 通常,数学作业表现为解题,解题要运用所学的知识和方法.因此,在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果. 解题,要按一定的程序、步骤进行.首先,要弄清题意,认真读题,仔细理解题意.如哪些是已知的数据、条件,哪些是未知数、结论,题中涉及到哪些运算,它们相互之间是怎样联系着的,能否用图表示出来,等等,要详加推敲,彻底弄清. 其次,在弄清题意的基础上,探索解题的途径,找出已知与未知,条件与结论之间的联系.回忆与之有关的知识方法,学过的例题、解过的题目等,并从形式到内容,从已知数、条件到未知数、结论,考虑能否利用它们的结果或方法,可否引进适当辅助元素后加以利用是否能找出与该题有关的一个特殊问题或一个类似问题,考察解决它们对当前问题有什么启发;能否把分开,一部分一部分加以考察或变更,再重新组合,以达到所求结果,等等.这就是说,在探索解题过程中,需要运用联想、比较、引入辅助元素、类比、特殊化、一般化、分析、综合等一系列方法,并从解题中学会这一系列探索的方法. 第三,根据探索得到的解题方案,按照所要求的书写格式和规范,把解的过程叙述出来,并力求简单、明白、完整.最后还要对解题进行回顾,检查解答是否正确无误,每步推理或运算是否立论有据,答案是否说尽无遗;思考一下解题方法可否改进或有否新的解法,该题结果能否推广(事实上中学课本中不少题目是可以推广的)等,并小结一下解题的经验,进而发展与完善解题的思想方法,总结出带有规律性的东西来. 二“由薄到厚”和“由厚到薄”的学习方法 “由薄到厚”和“由厚到薄”是数学家华罗庚多次提到的治学方法,他认为学习要经过“由薄到厚”和“由厚到薄”的过程.“由薄到厚”是理解和弄懂所学的数学知识,知其然并知其所以然.学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等.这样细加分析、考虑后,就会对内容增添某些注解,补充一些的解法或产生新的认识等,出现了“书越读越厚”. 但是学习不能到此止步,还需要把学过内容贯串起来,加以融会贯通,提炼出它的精神实质,抓住重点、线索和基本思想方法,组织整理成精炼的内容,这就是一个“由厚到薄”的过程.在这过程中,不是量的减少,而是质的提高,所以具有更重要的作用.通常在总结一章、几章或一本书的内容时,就要有这种要求,运用这种方法.这时由于知识出现高度概括,就更能促进知识的迁移,也更有利于进一步学习. “由薄到厚”和“由厚到薄”是一个螺旋上升的过程,它具有不同的层次和要求,学习中需要经过从低到高多次的运用,才能收到应有的效果.这一学习方法体现着“分析”与“综合”、“发散”与“收敛”的辩证统一,就是说数学学习需要这两者统一起来. 三 接受学习与发现学习相结合的方法 数学学习应是有意义接受学习和有意义发现学,如何使两者互相配合、有机结合,充分 发挥各自和综合的效力这是学习方法的一个重要方面. 接受学习,不论是听系统的讲授,还是以定论的形式给出的教材,都不涉及任何的独立发现.但在学习过程中,学生处于积极、主动的状态,并非只是单纯的接受,他们总不断地向自己提出问题,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方.许多数学家都十分强调“应该不只胀到书面上,而且还要看到书背后的东西.”在进行接受学习时,还要增添某些发现学习的万分,从中学习创造、发明的思想和方法,而不仅仅停留在知识的接受上. 发现学习,是依靠自己对所提供的材料或问题的观察、比较、分析、综合等,独立地了现的解决某问题,从而获得新知识.在解决问题时,要真正理解问题中所涉及的要领、原理、公式、定理和法则,懂得每步操作的意义,以及提出假设、检验假设的目的等.解决问题,总需要联想以往学习过和知识与方法,一时回忆不起来的,还要重新复习,以求进一步理解的应用.有是遇到困难问题,甚至还在查看参考书或请教老师者能解决.可见,这期间也穿插着接受学习. 数学学习既需要接受学习,以便在短时间内获得大量前人积累起来的宝贵知识财富,也需要发现学习,以利于思维、培养创造能力.因此,学习要根据自身的年龄、学习能力特点和教学内容的要求,使两者紧密结合起来.
采纳哦

最重要的是兴趣 数学是其他自然学科的基础,可以说现在前沿的科学没有哪个是能离开数学的,很多学人不能更进一步主要就是因为数学给卡住了 所以,不能给自己任何学不好数学的退路 况且,学好数学能培养你逻辑思维的习惯,能够更加客观的认识和分析世界 但是要做到循序渐进,要在学习过程中不断鼓励激励自己,当自己能成功解决一个个问题时,哪怕在别人看来很容易,只要自己得到了提高,就是不错的成绩。每个人取得的成...

全部展开

最重要的是兴趣 数学是其他自然学科的基础,可以说现在前沿的科学没有哪个是能离开数学的,很多学人不能更进一步主要就是因为数学给卡住了 所以,不能给自己任何学不好数学的退路 况且,学好数学能培养你逻辑思维的习惯,能够更加客观的认识和分析世界 但是要做到循序渐进,要在学习过程中不断鼓励激励自己,当自己能成功解决一个个问题时,哪怕在别人看来很容易,只要自己得到了提高,就是不错的成绩。每个人取得的成就往往不在于客观获得的成绩,而在于他对于自身的征服,提高自我的程度。 既然问到这个问题了,想必你是有准备的。 你可以试一试下面的方法: 1、清晨起床,先用10分钟整理一下今天要做的事情。 2、制定时间计划表。 3、做事不拖拉。 4、集中精神做一件事。 5、预习让课堂变的更轻松。 6、放学后第一件事就是做作业。 7、学会利用零碎时间。 8、合理分配时间。 9、通过写日记,整理一天的生活。 10、在薄弱的科目上多花点时间。 11、玩电脑游戏时一定要约定时间。 12、看电视前先想好看什么。 13、学会使用备忘录。 14、根据状态分配时间。 15、不要把时间浪费在没有意义的事情上。 16、利用假期体验一种全新的生活。 17、多花5分钟,多得五分。 18、一定要守时。 19、不要成为时间的奴隶。 20、再忙也不能凑合。 就这样按部就班,肯定成功!

收起