在三角形ABC中,已知(tanA+B)/2=sinC,给出以下四个论断:() 1,tanA*cotB=1 2,0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:29:03
在三角形ABC中,已知(tanA+B)/2=sinC,给出以下四个论断:() 1,tanA*cotB=1 2,0
x){:gœ/Ozwkun|Rmd';ΞdǪv=JCSPX+9PH&HVF@1 `&?`akft2dGOvYDuu6erLT&lt/.H̳ȹ

在三角形ABC中,已知(tanA+B)/2=sinC,给出以下四个论断:() 1,tanA*cotB=1 2,0
在三角形ABC中,已知(tanA+B)/2=sinC,给出以下四个论断:() 1,tanA*cotB=1 2,0

在三角形ABC中,已知(tanA+B)/2=sinC,给出以下四个论断:() 1,tanA*cotB=1 2,0
tan(A+B)/2=sin(A+B)
得sin(A+B)/cos(A+B)=2sin(A+B)
cos(A+B)=1/2,A+B=60度
A+B不等于90度,所以1错
A不等于B,所以3错
所以选A