简单三角恒等已知x+y=(根号2)sin(a+π/4),x-y=(根号2)sin(a-π/4),求证x^2+y^2=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 15:56:14
x){i';:_,qOoz>ivƳ;o7,H>ߠoS.xƊ8#8#[C"},e~
ͽ0e#.^V\Z`d] **mJ {:JF(]LtF=
B&k c˓K>{Ӯ@F@-hikӃ&
<;PP x)
简单三角恒等已知x+y=(根号2)sin(a+π/4),x-y=(根号2)sin(a-π/4),求证x^2+y^2=1
简单三角恒等
已知x+y=(根号2)sin(a+π/4),x-y=(根号2)sin(a-π/4),求证x^2+y^2=1
简单三角恒等已知x+y=(根号2)sin(a+π/4),x-y=(根号2)sin(a-π/4),求证x^2+y^2=1
由x+y=(根号2)sin(a+π/4)得x²+y²+2xy=2sin²(a+π/4)
由x-y=(根号2)sin(a-π/4)得x²+y²-2xy=2sin²(a-π/4)
∵sin(a-π/4)=cos(a+π/4)
∴两式相加得
2(x²+y²)=2
∴x²+y²=1