如图在梯形ABCD中AD//BC,AD=3,DC=5,AB=4√2,∠B=45°动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动,动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动,设运动的时间为t

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 15:27:39
如图在梯形ABCD中AD//BC,AD=3,DC=5,AB=4√2,∠B=45°动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动,动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动,设运动的时间为t
xV[SI+[/AƪL$U\$+dMj 8TD [Z\Ѕ@Oቿg3 ųO9};ql9\_jHo4!*<#U*4ejث?{[Ay8/[s n~Ss7rb>sx;' gw<hThEgq!6.U\m+p䓥~8hݦ] Wy7!x8AQ PP}\<{Egv}h"Ɠݤ依&wC?7uRgPP/~/_*NGMgGrX2s_ScGrism K sC ЅQ5eQT,VR"dL͘lJdaEXbD6Eb̘%22i!#JB"Ej,3LNi3Ŭb"fK\tޠ ifOkJ85_:yJ9̶[ރ:Tmm(eoiR9a=o.^~V;(J޳8n8xim=|mu_ w)2GKx!iL]X@$ voth~VQWj3m1zOiTRA)1YZJJ#B[ /|T82%6aĴbJBDfL2b$%_ͥ) )Y&+ı$F\|VIXX+c{ oԣƽ hluO i%Ε4D\%c}sTK‹&Ԩv;(pu*䯓  Z?5V?Y}6,$䍯ew~ #5kNhhH}xx }|Lǡݺ-׈:HFTkV_`@~4|oczT[ AxUXStEUh#w!/1y9)$bW2>JFD*1R{oGaoMnuXtԕn=2`HANtry-UdhVSymoyr;*a 55Sz%v:,šGE50^R0!$.I;2 BjӭX 4s)i%Ld= -KB$ D@@d βy`籄/& 5z%V\]!

如图在梯形ABCD中AD//BC,AD=3,DC=5,AB=4√2,∠B=45°动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动,动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动,设运动的时间为t
如图在梯形ABCD中AD//BC,AD=3,DC=5,AB=4√2,∠B=45°动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动,动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动,设运动的时间为t秒
1、求BC的长
2、当MN//AB时,求t的值
3、试探究t为何值时,△MNC为等腰三角形

如图在梯形ABCD中AD//BC,AD=3,DC=5,AB=4√2,∠B=45°动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动,动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动,设运动的时间为t

(1)作梯形的两条高,根据直角三角形的性质和矩形的性质求解;

(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;

(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.

(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.

∴KH=AD=3.

在Rt△ABK中,AK=AB•sin45°=4 √2• 22=4BK=AB•cos45°=4 √2•√2/2=4.

在Rt△CDH中,由勾股定理得,HC= 52-42=3.

∴BC=BK+KH+HC=4+3+3=10.

(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.

∵MN∥AB,

∴MN∥DG.

∴BG=AD=3.

∴GC=10-3=7.

由题意知,当M、N运动到t秒时,CN=t,CM=10-2t.

∵DG∥MN,

∴∠NMC=∠DGC.

又∠C=∠C,

∴△MNC∽△GDC.

∴ CN:CD=CM:CG,

即 t/5=10-2t/7.

解得, t=50/17.

(3)分三种情况讨论:

①当NC=MC时,如图③,即t=10-2t,

∴ t=10/3.

②当MN=NC时,如图④,过N作NE⊥MC于E.

∵∠C=∠C,∠DHC=∠NEC=90°,

∴△NEC∽△DHC.

∴ NC:DC=EC:HC,

即 t/5=5-t/3.

∴t= 25/8.

③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC= 12NC= 12t.

∵∠C=∠C,∠MFC=∠DHC=90°,

∴△MFC∽△DHC.

∴ FC:HC=MC:DC,

即 12t/3=10-2t/5,

∴ t=60/17.

综上所述,当t= 10/3、t= 25/8或t= 60/17时,△MNC为等腰三角形.