英译中:The average value of (a-b) +(b-c) over all possibleThe average value of (a-b) +(b-c) over all possible arrangement (a,b,c) of the three numbers (1,4,7) is ____.

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/03 14:28:38
英译中:The average value of (a-b) +(b-c) over all possibleThe average value of (a-b) +(b-c) over all possible arrangement (a,b,c) of the three numbers (1,4,7) is ____.
xRn@~= !!5S^#@"(ڒĊ&ښ4]W؋[Rƞ~ƛ,]CUc;*9dIE0)LKX6K bqOɪp0Mcu_͕p*ԟ&%*jJrI(F4&{EgIEjn02<-[s+16(̪ԱWØwgrȯG9TߝмeURqI%ᛂ:LeSBS~b0([3)HE [@_pӆO}u~7O\qf3"UShHP~\N=X$CE+O%s|ICÜ-ǥڒYT:ԥ(h||ñHLK67:X] Ѯz:M=sWC>9=0ׇ? y$XݜQ[Ղuxfʁ ,O*

英译中:The average value of (a-b) +(b-c) over all possibleThe average value of (a-b) +(b-c) over all possible arrangement (a,b,c) of the three numbers (1,4,7) is ____.
英译中:The average value of (a-b) +(b-c) over all possible
The average value of (a-b) +(b-c) over all possible arrangement (a,b,c) of the three numbers (1,4,7) is ____.

英译中:The average value of (a-b) +(b-c) over all possibleThe average value of (a-b) +(b-c) over all possible arrangement (a,b,c) of the three numbers (1,4,7) is ____.
在(a-b)+(b-c)这个算式中,将a,b,c三个未知数依次代入1,4,7三个数字(即a=1,b=4,c=7或a=4,b=1,c=7等等(一共六种代入结果)),每次得到算式结果的平均值是多少.
很明显这个结果是0
(笨一点,把算式拆开,(a-b)+(b-c)=a-c,然后a=1,c=7;a=1,c=4;a=4,c=7;a=4,c=1;a=7,c=1;a=7,c=4
全部代入计算,算出所有结果加起来是0,平均值当然还是0)
【我是这么理解的,不敢保证一定对,不好意思……没用英语做过数学题……】