f(x)=cos^x/2— sin^x/2+sinx 当xo∈(0,π/4)且f(x0)=4根2/5,求f(x0+π/6)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:45:59
f(x)=cos^x/2— sin^x/2+sinx 当xo∈(0,π/4)且f(x0)=4根2/5,求f(x0+π/6)的值
xP1n@ʕ1糫;D"!+n U$ N_@u33glq+wuU<rs9z)C

f(x)=cos^x/2— sin^x/2+sinx 当xo∈(0,π/4)且f(x0)=4根2/5,求f(x0+π/6)的值
f(x)=cos^x/2— sin^x/2+sinx 当xo∈(0,π/4)且f(x0)=4根2/5,求f(x0+π/6)的值

f(x)=cos^x/2— sin^x/2+sinx 当xo∈(0,π/4)且f(x0)=4根2/5,求f(x0+π/6)的值
f(x)=(cos(x/2))^2 /2 -(sin(x/2))^2+sinx
=cosx+sinx
=√2sin(x+π/4 )
f(x0)= √2sin(x0+π/4 )=4√2/5
sin(x0+π/4)=4/5 cos(x0+π/4)=3/5
f(x0+π/6)=sin[(x0+π/6)+π/4]=sin[(x0+π/4)+π/6]=(4/5)(√3/2)+(3/5)*(1/2)=(4√3+3)/10

不懂