1/3+1/15+1/35+1/63…+1/(2n-1)(2n+1)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 21:27:25
x)37674 Q2 ~OQ=`6ekTO;Z`T]c\RoZa$+, k30j3S1q́KMm===LM]0CPSnb!\"$ÁQүa&z7~2.h6N n-| j9
1/3+1/15+1/35+1/63…+1/(2n-1)(2n+1)=
1/3+1/15+1/35+1/63…+1/(2n-1)(2n+1)=
1/3+1/15+1/35+1/63…+1/(2n-1)(2n+1)=
1/3+1/15+1/35+1/63…+1/(2n-1)(2n+1)
=1/1x3+1/3x5+1/5x7+1/7x9…+1/(2n-1)(2n+1)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+...+1/2(1/(2n-1)-1/(2n+1))
=1/2{1-1/(2n+1)}
=n/(2n+1)
1/(2n-1)(2n+1)=1/2*【1/(2n-1)-1/(2n+1)】
原式=1/2*【(1-1/3)+(1/3-1/5)+...+1/(2n-3)-1/(2n-1)+1/(2n-1)-1/(2n+1)】
=1/2*【1-1/(2n+1)】
=n/(2n+1)