求y'-2/(X+1)y=(x+2)^3的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 09:27:08
求y'-2/(X+1)y=(x+2)^3的通解
xTOPWޮ_n}3Yi{;6]e,v>>FL@DL$C<]A᥽>=7eOzTM`}pu{ʷ7^olYt#ٓ8)ertu _z߼f"%ǩ^k8r.{RAfwVsX!`M,_w^`ТpY!Jg- D'e#~  <±':wsmoH|'OJͥpLiv.v۶`hE:o Ͼ{&JfMvؐpglBZv#5-d'Uc_[ M~f:bRIɿx?H4k#9Bz

求y'-2/(X+1)y=(x+2)^3的通解
求y'-2/(X+1)y=(x+2)^3的通解

求y'-2/(X+1)y=(x+2)^3的通解
求y'-[2/(x+1)]y=(x+2)³的通解
先求齐次方程y'-[2/[(x+1)]y=0的通解.
分离变量得dy/y=2dx/(x+1);积分之得lny=2ln(x+1)+lnC₁=lnC₁(x+1)²;
故得y=C₁(x+1)²; 将C₁换成x的函数u,得y=u(x+1)².(1)
将(1)的两边对x取导数得dy/dx=2u(x+1)+(x+1)²(du/dx).(2)
将(1)和(2)代入原方程得2u(x+1)+(x+1)²(du/dx)-[2/(x+1)][u(x+1)²]=(x+2)³
化简得(x+1)²(du/dx)=(x+2)³
故得du/dx=(x+2)³/(x+1)²;分离变量得du=[(x+2)³/(x+1)²]dx=[(x+4)+(3x+4)/(x+1)²]dx;
积分之得u=∫(x+4)dx+∫[(3x+4)/(x+1)²]dx=(x+4)²/2+3∫xdx/(x+1)²+4∫d(x+1)/(x+1)²
=(x+4)²/2+(3/2)∫d(x+1)²/(x+1)²-3∫dx/(x+1)²+4∫d(x+1)/(x+1)²
=(x+4)²/2+(3/2)ln(x+1)²-3∫d(x+1)/(x+1)²+4∫d(x+1)/(x+1)²
=(x+4)²/2+(3/2)ln(x+1)²+∫d(x+1)/(x+1)²=(x+4)²/2+(3/2)ln(x+1)²-1/(x+1)+C
代入(1)式即得原方程的通解为y=(x+1)²[(x+4)²/2+3ln∣x+1∣-1/(x+1)+C]

从方程的形式来看P=-2/(X+1)     Q=(x+2)^3

根据公式