函数f(x)=sin(2x+π/6),g(x)=cos(x+φ),|φ|
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:04:40
函数f(x)=sin(2x+π/6),g(x)=cos(x+φ),|φ|
函数f(x)=sin(2x+π/6),g(x)=cos(x+φ),|φ|
函数f(x)=sin(2x+π/6),g(x)=cos(x+φ),|φ|
令2x+π/6=kπ+π/2得
f(x)的对称轴x=kπ/2+π/6
令x+φ=mπ得
g(x)的对称轴为x=mπ-φ
f(x)有对称轴经过g(x)的对称中心则
kπ/2+π/6=mπ-φ
即
φ=(m-k/2-1/6)π ①
又
|φ|
-2/3<2m-k<4/3
=>
2m-k=0或1
=>
m=k/2或(k+1)/2
由k∈Z得
k/2、(k+1)/2等价
故
m=k/2
代入①得
φ=-π/6
∴ g(x)=cos(x-π/6)
g(π/3)=cos(π/3-π/6)=√3/2
由sin(2x+π/6)=±1,得2x+π/6=kπ+π/2,2x=kπ+π/3,x=kπ/2+π/6,
故f(x)的对称轴是x=kπ/2+π/6,k∈Z,
由cos(x+φ)=0,得x+φ=kπ+π/2,即g(x)的对称中心是(kπ+π/2-φ,0),k∈Z,
由题意k1π/2+π/6=k2π+π/2-φ,即φ=k2π-k1π/2+π/3,(k1、k2∈Z),
∵...
全部展开
由sin(2x+π/6)=±1,得2x+π/6=kπ+π/2,2x=kπ+π/3,x=kπ/2+π/6,
故f(x)的对称轴是x=kπ/2+π/6,k∈Z,
由cos(x+φ)=0,得x+φ=kπ+π/2,即g(x)的对称中心是(kπ+π/2-φ,0),k∈Z,
由题意k1π/2+π/6=k2π+π/2-φ,即φ=k2π-k1π/2+π/3,(k1、k2∈Z),
∵|φ|<π/2,∴当k1=k2=0时,φ=π/3,
故g(x)=cos(x+π/3),g(π/3)=cos(π/3+π/3)=cos2π/3=-1/2。
收起