求微分方程y"+2/(1-y)*(y')^2=0的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:29:13
求微分方程y
x=N0md)@)ȂfGJvAKDD{@+0HPyDiyexY,c98i׫GU@Lշ0*W4'u*hm0WCρaT%8nU/mntd8,_L|#f%% 2u$O@B EH~Q bah`cXh&f/\M-m޿9va~

求微分方程y"+2/(1-y)*(y')^2=0的通解
求微分方程y"+2/(1-y)*(y')^2=0的通解

求微分方程y"+2/(1-y)*(y')^2=0的通解
令p=y'
则y"=pdp/dy
代入方程:pdp/dy+2/(1-y)*p^2=0
dp/p=2dy/(y-1)
积分:ln|p|=2ln|y-1|+C
得:p=C1(y-1)^2
dy/(y-1)^2=C1dx
积分;-1/(y-1)=C1x+C2
故y=1-1/(C1x+C2)

y"+2/(1-y)*(y')^2=0
y''/y'+2y'(1-y)=0
y''/y'=2y'/(y-1)
(lny')'=2(ln(y-1))'
lny'=2ln(y-1) +C
=ln(y-1)^2+C
=ln(y-1)^2+lnC1
=lnC1(y-1)^2
y'=C1(y-1)^2
y=C1(y-1)^3/3 +C2
=C3(y-1)^3+C2