已知f(x)在(-∞,+∞)内连续,f(0)=1,设F(x)= sinx到x^2对f(t)的积分则F(0)的导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:13:03
xN0_e4"h5Q1 I XR` wA<NtI>>Cqy>{ȕJ~ UlOO:\5;۞V+18>c1JN~L#1ݞ} 0~o.RA;]Ynu$͓̊nDRKUdh#1> 3t 1۱1Fk,afG-aI'&p]ΥM^Lb?y g0
m+wg7zq"'(M̾j=+5.Y6A}w}؛a^4ސ*͊U0,,s5C45`(Npa t2
已知f(x)在(-∞,+∞)内连续,f(0)=1,设F(x)= sinx到x^2对f(t)的积分则F(0)的导数
已知f(x)在(-∞,+∞)内连续,f(0)=1,设F(x)= sinx到x^2对f(t)的积分则F(0)的导数
已知f(x)在(-∞,+∞)内连续,f(0)=1,设F(x)= sinx到x^2对f(t)的积分则F(0)的导数
见图
F(x)=(x^2,0)f(t)dt-(sinx,0)f(t)dt
所以F'(x)=f(x^2)*2x-f(sinx)cosx
所以x=0时F'(0)=f(0)*0-f(0)*1=-1
大学>>??
若f(x)在(a,+∞)内连续可导,当x>0,f'(x)
若f(x)在(a,+∞)内连续可导,当x>0,f'(x)0,f'(x)
急求:已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x),的问题急求:已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x),先问f(1/2t)dt要将f(1/2t)里的1/2t看成是u变为 2du 吗,那原式是
已知f(x)在(-∞,+∞)内连续,f(0)=1,设F(x)= sinx到x^2对f(t)的积分则F(0)的导数
设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0,求证F(x)在(a,+∞)内单调递增.
微积分 若f(x)在(-∞,+∞)内连续,且lim f(x)存在,则f(x)必在(-∞,+∞)x→∞内有界
若f(x)在(-∞,+∞)内有一阶连续导数且f(0)=0,则当A=?时,g(x)=f(x)/x,x≠0;A,x=0在(-∞,+∞)内连续
f(x)在(-∞,+∞)内连续,且limx→∞f(x)存在,证明f(x)在(-∞,+∞)内有界
f(x)在[1, ∞)连续,f (1)=2,在(1, ∞)内f''(x)≤0,f' (1)=-3,证明:f(x)=0在(1, ∞)内仅有一个实根
已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x),先问f(1/2t)dt要将f(1/2t)里的1/2t看成是u变为 2du 那原式是变为 f(x)=2∫(0→2x)f(u)du ,在求导吗,那就等于 4f(x),但答案是2f(x).
数学函数极限和连续题1、设f(x)满足f(x1+x2)=f(x1)f(x2),所有x1,x2属于(-∞,+∞),若f(x)在x=0处连续,且f(0)不为零,证明f(x)在(-∞,+∞)内连续2、已知a>0,X0>0,Xn+1=1/2(Xn + a/Xn)其中n=0、1、2...求lim Xn .
已知f(x)在实数上连续,证明:(1)若f(f(x))趋于∞,那么f(x)趋于∞(2)若f(f(x)趋于+∞,那么f(x)趋于+∞
设f(x)在区间(-∞,+∞)内单调增加,limf(x)=1(x→0),证明f(x)在x=0处连续
已知函数f(x)在(-∞,+∞)上连续且满足∫(0,x)f(x-u)e^udu=sinx,x∈(-∞,+∞),求f(x)
设f(x)在(0,+∞)内连续,且f(1)=0,f(x)=xe^-x+1/x∫(x,0)f(t)dt,则f(x)=
设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0
设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0
f(x)在[0,+∞)有连续导数,f''(x)>=k>0,f(0)