若cos(π/4+x)=3/5,17/12π

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:01:06
若cos(π/4+x)=3/5,17/12π
xJ@_E(,q341&}C% "ҫЫ% }B fM*=d٤bTB_lѱAfNwLF2̲]=7&rP1+ln뷇ƾeK=2t%S>E0"drx̕$8:pGV#Bd $ mc$̰KO]vfWW ln ZXOµ߹ ٌx#Տ 8g{`5L`t&Gn|>@

若cos(π/4+x)=3/5,17/12π
若cos(π/4+x)=3/5,17/12π

若cos(π/4+x)=3/5,17/12π

∵(17/12)π

17π/12<x<7π/4,得5π/3<x+π/4<2π
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-sin²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²...

全部展开

17π/12<x<7π/4,得5π/3<x+π/4<2π
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-sin²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²=7/25
[sin(2x)+2sin²x]/(1-tanx)
=2(sinxcosx+sin²x)/(1-sinx/cosx)
=2(cosx+sinx)/(1/sinx-1/cosx)
=2(cosx+sinx)sinxcosx/(cosx-sinx)
=cos(x-π/4)sin(2x)/cos(x+π/4)
=-4/5•7/25/(3/5)
=-28/75

收起