二次函数y=mx²+4mx-2的图像与x轴交点坐标为x1及x2,且x12.求m取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:29:10
二次函数y=mx²+4mx-2的图像与x轴交点坐标为x1及x2,且x12.求m取值范围
xTnA~) Hj˾BwkޑR@i# mj ]Xo+^3Z" ㅉ3s|wrFQ> M@~t#5y iZeݝ;۳m2yUea= H9n1 ͑UoʿyoY8o`1ba,-&jM4'fPy*ʇrJ`^)ddzrZ)6Jw4]ۆVOsW'p󌂗9D/QwTf( Gc˅Sp p@`څy}ŒA=4GS@GI^@ g. 9!oj_;x;3*O#qmcwDS~5En ANCS@݄D8;9Y+G.μ"'~U1پ)ba0)c79H$JF j.cgc Ƹ#5U*8pf{F8IVkѧv Wh{UYzfVx ^|^OHq:@akj4xe=Qm|\8/%baj*?Q>

二次函数y=mx²+4mx-2的图像与x轴交点坐标为x1及x2,且x12.求m取值范围
二次函数y=mx²+4mx-2的图像与x轴交点坐标为x1及x2,且x12.求m取值范围

二次函数y=mx²+4mx-2的图像与x轴交点坐标为x1及x2,且x12.求m取值范围
二次函数y=mx²+4mx-2的图像与x轴交点坐标为x1及x2,
二次函数y=mx²+4mx-2过定点(0,-2),且x12.
故m>0(即开口方向应向上,否则不可能出现一正根,一负根)
又一根在-4的左边,一根在2的右边
于是m×(-4)²+4m×(-4)-2

1. m<0时,图像开口向下, x1与x2之间的f(x)都大于0
则f(-4)<0 f(2)<0
即f(-4)=16m-16m-2<0 -2<0 成立
f(2)=4m+8m-2<0 12m<2 m<1/6
综上:m<0
2. m=0 y=-2与x不可能有两个交点,不合题意
3. m>0时,图像开口向上,x1与x2之间的f(x)都小于0...

全部展开

1. m<0时,图像开口向下, x1与x2之间的f(x)都大于0
则f(-4)<0 f(2)<0
即f(-4)=16m-16m-2<0 -2<0 成立
f(2)=4m+8m-2<0 12m<2 m<1/6
综上:m<0
2. m=0 y=-2与x不可能有两个交点,不合题意
3. m>0时,图像开口向上,x1与x2之间的f(x)都小于0
则f(-4)>0 f(2)>0
即f(-4)=16m-16m-2>0 -2>0 不成立
f(2)=4m+8m-2>0 12m>2 m>1/6
综上:无解
所以m取值范围是: m<0
希望能帮到你O(∩_∩)O

收起

由题意,
把x=-4代入:16m-16m-2<0,则图像只能开口向上,m>0,同时,m×2²+4m×2-2<0
∴m取值范围为:0﹤m﹤1/6