已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N+)(1)求证:数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列{bn/(an+2)}的前n项和,求证:Tn≥1/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:41:09
已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N+)(1)求证:数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列{bn/(an+2)}的前n项和,求证:Tn≥1/2
xSn@~vJli_\ɹpACG*PZMiD&w Ɣ/vofX,vrwX ٴ `unV,Xbo m#%9q&׹~Z ޣ))d.UC,p9&UZk>-v߫O,H̎av`̯ub!NE$i=;dN 4GY9CSt͐dK(/GDV'z >Ʋ2D ,7Fuw9 (uj)-w5YdT ?2Ϗ6LY]Adgne-@dUDWbSv t+^шP{j[ـՔ#?"E4 ϻd]S{Ԓ34o5B% nኝ_2 t]b1sGuݻC>]Zsd7}=xjޟ;*ɨ=0h^@3V6"?K7

已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N+)(1)求证:数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列{bn/(an+2)}的前n项和,求证:Tn≥1/2
已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N+)(1)求证:数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列{bn/(an+2)}的前n项和,求证:Tn≥1/2

已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N+)(1)求证:数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列{bn/(an+2)}的前n项和,求证:Tn≥1/2
1.答:由Sn=2An-2可得S(n-1)=2A(n-1)-2,且n≥2.
又Sn-S(n-1)=An可得2An-2A(n-1)=An.且n≥2
即可以推出An=2A(n-1),又令n=1时S1=2A1-2=A1,可知A1=2,又令n=2可得A2=4.那么An是以A2为首项,以2为公比的等比数列.
又A2=2A1,则A1也符合该数列.所以,An=A1×2^(n-1)=2^n.
2 缩放法
bn=log2(2^n+2)
Tn=bn/(an+2)=log2(2^n+2)/(an+2)=log2(2^n+2)/(2^n+2)
>=1/2

Sn=2an-2n(n∈N+) -----(1)
=>S(n-1)=2a(n-1)-2(n-1) (N>=2) ---(2)
(1)-(2) Sn-S(n-1)=2an-2a(n-1)+2 => an=2an-2a(n-1)+2
=> an=2a(n-1)+2 => an+2=2a(n-1)+4 =>an+2=2(a(n-1)+2)

全部展开

Sn=2an-2n(n∈N+) -----(1)
=>S(n-1)=2a(n-1)-2(n-1) (N>=2) ---(2)
(1)-(2) Sn-S(n-1)=2an-2a(n-1)+2 => an=2an-2a(n-1)+2
=> an=2a(n-1)+2 => an+2=2a(n-1)+4 =>an+2=2(a(n-1)+2)
an+2为等比数列(n>=2),公比为2.
首项为根据Sn=2an-2n计算,令n=1, =>a1=2a1-2*1 =>a1=2
an=a1q^(n-1)=2*2^(n-1)=2^n
bn=log2(2^n+2)
Tn=bn/(an+2)=log2(2^n+2)/(an+2)=log2(2^n+2)/(2^n+2)
>=1/2

收起

已知数列{an}的前n项和为sn,且满足sn=n 已知数列(an)的前n项和为Sn,满足an+Sn=2n,证明数列(an-2)为等比数列并求出an 已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an (1)已知数列an的前n项和为sn满足sn=an²+bn,求证an是等差数列(2)已知等差数列an的前n项和为sn,求证数列sn/n也成等差数列 已知数列an前n项的和为Sn 且满足Sn=1-nan n=自然数 已知数列{an}的前n项和Sn满足log2(Sn +1)=n 则其通向公式为 已知数列{an}的前n项和为Sn,且满足an+2Sn×S(n-1)=0,a1=1/2.(1)求证:{1/Sn}是等差数列;(2)求数列{an}的通项公式. 已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式anRT , 已知数列{An}中,A1=-1,前n项和为Sn(Sn不等于0),满足Sn乘以S(n-1)=An(n大于等于2),求数列的通项公式. 已知数列{an}的前n项和Sn满足lg(1+Sn)=n 则数列{an}的通项公式为an=____ 已知数列{an}的前n项和为Sn,满足Sn=2an-2n,1.求数列an的通向公式2. 已知数列{an}的前n项和满足a1=1/2,an=-Sn*S(n-1),(n大于或等于2),求an,Sn 已知数列{an}的前n项和为Sn,通项an满足Sn+an=1/2(n²+3n-2)求通项公式an 已知数列{an}的前n项和为Sn,满足an+Sn=2n. (Ⅰ)证明:数列{an-2}为等比数列,并求出an;已知数列{an}的前n项和为Sn,满足an+Sn=2n.(Ⅰ)证明:数列{an-2}为等比数列,并求出an;(Ⅱ)设bn=(2-n) 已知数列an的前n项和sn满足log2(an+1)=n+1,则通项公式为 已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an已知数列{an}a1=2前n项和为Sn 且满足Sn +Sn-1=3an 求数列{an}的通项公式an 已知数列{an}的前n项和为Sn,且满足an+2Sn*S(n-1)=0 (n>=2),a1=0.5.(1)求证:{1/Sn}是等差数列 (2)求an 已知数列{an}的前n项和为Sn,an+Sn=2,(n