奇函数f(x)满足f(x+2)=f(x)当x属于(0,1)时f(x)=2^x则f(log0.5底23)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 10:32:13
奇函数f(x)满足f(x+2)=f(x)当x属于(0,1)时f(x)=2^x则f(log0.5底23)=
x){igS7iTh>۽Ŷ@-HO7{O@Pm Q[34r LjdikTOM l>$ۜt#cR`e:^f@Z.odݥQk |F$6hA`* LX=tgs#]-(b`&>\F 1 

奇函数f(x)满足f(x+2)=f(x)当x属于(0,1)时f(x)=2^x则f(log0.5底23)=
奇函数f(x)满足f(x+2)=f(x)当x属于(0,1)时f(x)=2^x则f(log0.5底23)=

奇函数f(x)满足f(x+2)=f(x)当x属于(0,1)时f(x)=2^x则f(log0.5底23)=
log0.5底23=lg23/lg0.5=lg23/(-lg2)
所以f(log0.5底23)=f[-log2(23)],奇函数,所以=-f[log2(23)]
由f(x+2)=f(x),所以f(x+4)=f(x+2+2)=f(x+2)=f(x)所以4是f(x)的周期
所以=-f[log2(23)-4]
=-f[log2(23)-log2(16)]
=-f[log2(23/16)]
1