急吖.我不会这题.将函数y=-x²进行平移,使得到的图形与函数y=x²-x-2的图象的两个交点关于原点对称,求平移后函数的解析式.这题有常规解法,我比较能理解,还给出了一种比较巧的办法,如
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 18:27:46
急吖.我不会这题.将函数y=-x²进行平移,使得到的图形与函数y=x²-x-2的图象的两个交点关于原点对称,求平移后函数的解析式.这题有常规解法,我比较能理解,还给出了一种比较巧的办法,如
急吖.我不会这题.
将函数y=-x²进行平移,使得到的图形与函数y=x²-x-2的图象的两个交点关于原点对称,求平移后函数的解析式.
这题有常规解法,我比较能理解,还给出了一种比较巧的办法,如下:
依提意,y=x²-x-2的顶点坐标为(1/2,-9/4),它关于原点的对称点为(-1/2,9/4)应在平移后的新图形上,
∴ 平移向量a=(-1/2,9/4)
下面的就不写了,能看的懂.
"使得到的图形与函数y=x²-x-2的图象的两个交点关于原点对称"
这句话说明了新图形图象与y=x²-x-2图象的关于原点对称的两交点一定是
y=x²-x-2的顶点坐标和它关于原点对称坐标吗?为什么?
急吖.我不会这题.将函数y=-x²进行平移,使得到的图形与函数y=x²-x-2的图象的两个交点关于原点对称,求平移后函数的解析式.这题有常规解法,我比较能理解,还给出了一种比较巧的办法,如
放开这个题,你想一想如果两个图形关于原点对称,它们的交点关于原点对称么?这是一定的.就像镜面对称,交点一定在镜面上一样.
如果还不好理解的话,可以想象两个图形整体看做一个图形,那么它自身关于原点对称,如果某处有一个点是原来两个图形的交点,那与之对称的点必然也是原来两个图形的交点.考虑下
我们画个图来解释这个问题,y=-x²和y=x²-x-2的开口度相同,y=x²-x-2可以化到定点式,然后在同一坐标轴中画出这两个图像,然后我们可以很容易的分析如果一个图形需要和y=x²-x-2形成两个交点还必须关于原点对称,则这个图形的必定需要跟y=x²-x-2原点对称,则顶点坐标要关于原点对称,对称轴也要关于y轴对称...
全部展开
我们画个图来解释这个问题,y=-x²和y=x²-x-2的开口度相同,y=x²-x-2可以化到定点式,然后在同一坐标轴中画出这两个图像,然后我们可以很容易的分析如果一个图形需要和y=x²-x-2形成两个交点还必须关于原点对称,则这个图形的必定需要跟y=x²-x-2原点对称,则顶点坐标要关于原点对称,对称轴也要关于y轴对称
收起
题目中 "使得到的图形与函数y=x2-x-2的图象的两个交点关于原点对称"
这句话说明了新图形图象与y=x2-x-2图象的关于原点对称的两交点一定是
y=x2-x-2的顶点坐标和它关于原点对称坐标吗? 是啊!
两个图像
y=0与y=x2-x-2的组合图形A
也要关于原点对称,
所以交点当然对称了...
全部展开
题目中 "使得到的图形与函数y=x2-x-2的图象的两个交点关于原点对称"
这句话说明了新图形图象与y=x2-x-2图象的关于原点对称的两交点一定是
y=x2-x-2的顶点坐标和它关于原点对称坐标吗? 是啊!
两个图像
y=0与y=x2-x-2的组合图形A
也要关于原点对称,
所以交点当然对称了
收起
这个不一定的。。
不过这两个图形一定关于原点对称