已知圆C1:X^2+Y^2=4,C2:X^2+Y^2-2X-4Y+4=0,与直线L:X+2Y=0,求经过C1,C2的焦点且和L相切的圆的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:21:16
已知圆C1:X^2+Y^2=4,C2:X^2+Y^2-2X-4Y+4=0,与直线L:X+2Y=0,求经过C1,C2的焦点且和L相切的圆的方程
xŒN@_% l æ[U#>!(b"x7"xB]L+^:x]4g9mJt*]`

已知圆C1:X^2+Y^2=4,C2:X^2+Y^2-2X-4Y+4=0,与直线L:X+2Y=0,求经过C1,C2的焦点且和L相切的圆的方程
已知圆C1:X^2+Y^2=4,C2:X^2+Y^2-2X-4Y+4=0,与直线L:X+2Y=0,求经过C1,C2的焦点且和L相切的圆的方程

已知圆C1:X^2+Y^2=4,C2:X^2+Y^2-2X-4Y+4=0,与直线L:X+2Y=0,求经过C1,C2的焦点且和L相切的圆的方程
在直角坐标系中做出各图.发现L过C1的焦点,而求的圆要与L相切,那么(0,0)为所求的圆上的点,那么过点(0,0)且与L垂直的直线方程为Y=2X,则直径在其上,所以圆心也在上面,设圆心为P(X1,Y1),P在Y=2X上,所以Y1=2*X1-----①
又由 C1P=PC2,所以[(X1-1)^2+(Y1-2)^2]^1/2=(X1^2+Y^2)^1/2,
所以 2*X1+4*Y1=5---②
联立①②求出X1=1/2,Y1=1
则半径R==(X1^2+Y^2)^1/2=(5^1/2)*(1/2)
所以所求圆为:(X-0.5)^2+(Y-1)^2=2.5.

已知圆C1:x^2+y^2+2x+3y+1=0,圆C2:x^2+y^2+4x+3y+2=0,判断圆C1与圆C2的位置关系如题....... 已知圆C1:x^2+y^2+2x+3y+1=0,圆C2:x^2+y^2+4x+3y+2=0,判断圆C1与圆C2的位置关系 急. 已知圆c1:x+y+2x+3y+1=0,圆c2:x+y+4x+3y+2=0,判断圆c1与圆c2的位置关系谢谢了, 已知曲线C1:y=x2和C2:y=-(x-2)2,求C1和C2的公切线 已知圆C1:(x+1)^2+(y-1)^2=1,圆C2与圆C1关于x-y-1=0对称,求C2 已知圆C1:(x+1)^2+(y-1)^2=1,圆C2与圆C1关于x-y-1=0对称,求C2 已知圆C1:X的平方+Y的平方+2Y+3Y+1=0 圆:C2:X的平方+Y的平方+4X+3Y=0 判断C1与C2的位置关系 已知圆C1:x²+y²-2y=4,C2:x²+y²+2x=0问圆C1与圆C2是否相交若相交,求出公共弦所在直线方程 已知:抛物线C1 C2关于x轴对称,抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,如图,已知:抛物线C1 C2关于x轴对称,:抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1, 已知圆C1:X2 + Y2 + 2X + 8Y – 8 = 0,C2 :X2 + Y2 + 4X - 4Y – 2 = 0. 是判断我要详细过程,谢谢!已知圆C1:X2 + Y2 + 2X + 8Y – 8 = 0,C2 :X2 + Y2 + 4X - 4Y – 2 = 0. 是判断圆C1与C2的关系。 已知抛物线C1:y=x*2-4x+3,将C1绕点P(t,1)旋转180°得C2,若C2的顶点在抛物线C1上,求C2解析式 已知抛物线C1:y=x*2-4x+3,将C1绕点P(t,1)旋转180°得C2,若C2的顶点在抛物线C1上,求C2解析式 已知两圆C1:(x-4)^2+y^2=169,C2:(x+4)^2+y^2=9,动圆在圆C1内部且和C1相切已知两圆C1:( x-4)^2+y^2=169,C2:(X+4)^2+Y^2=9,动圆在圆C1的内部且和圆C1相内切,和圆C2相外切,求动圆圆心的轨迹. 已知两圆c1:x^2+y^2-2x=0,c2:x^2+y^2+4y=0,则两圆的公共弦长.急 已知圆C1:x∧2+y∧2+4x+3=0 (1) 若圆C2与圆C1外切且与直线L:x=1相切,求圆C2 已知:抛物线C1 C2关于x轴对称,抛物线C2 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,如图,已知:抛物线C1 C2关于x轴对称,:抛物线C2 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1, 已知两圆C1:(x+3)^2+y^2=4,C2:(x-3)^2+y^2=100,动圆P与圆C1外切,与圆C2内切,求动圆圆心P轨迹方程. 已知圆c1:(x-4)^2 +y^2=169 圆c2:(x+4)^2+y^2=9 动圆C与C1内切与C2外切,求C圆心轨迹方程.