设n(n>=3)阶方阵A为正对角线为1,其余为a的方阵.A的秩为n-1,求a.答案给的是-1/n-1这个是怎么得来的.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:59:38
设n(n>=3)阶方阵A为正对角线为1,其余为a的方阵.A的秩为n-1,求a.答案给的是-1/n-1这个是怎么得来的.
x){n_=yvtٴ/glu|c׳b:O[=;L|>N||%P0OPƦDk<[|Lu R/5r5=tgs$`s:b#N py:{" GM[˟u6<ٽTƱFV♆(_P[P3QSP7Q3A֖TdcB O%> b΋ާ}R\g n5"

设n(n>=3)阶方阵A为正对角线为1,其余为a的方阵.A的秩为n-1,求a.答案给的是-1/n-1这个是怎么得来的.
设n(n>=3)阶方阵A为正对角线为1,其余为a的方阵.A的秩为n-1,求a.
答案给的是-1/n-1
这个是怎么得来的.

设n(n>=3)阶方阵A为正对角线为1,其余为a的方阵.A的秩为n-1,求a.答案给的是-1/n-1这个是怎么得来的.
因为 r(A)=n-1
所以 |A| = 0
而 |A| = (1+(n-1)a)(1-a)^(n-1)
所以 a = 1 或 a= -1/(n-1)
但a=1时 r(A)=1,舍去.