三棱锥A-BCD中,E,F分别为AC,BD中点,若AB=2,CD=4,AB⊥EF,求EF与CD所成的角.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 06:16:00
三棱锥A-BCD中,E,F分别为AC,BD中点,若AB=2,CD=4,AB⊥EF,求EF与CD所成的角.
三棱锥A-BCD中,E,F分别为AC,BD中点,若AB=2,CD=4,AB⊥EF,求EF与CD所成的角.
三棱锥A-BCD中,E,F分别为AC,BD中点,若AB=2,CD=4,AB⊥EF,求EF与CD所成的角.
取AD中点M,BC中点N,连结ME、MF、EN、FN,
MF是三角形ABD中位线,
MF//AB,且MF=AB/2=1,
EF⊥AB,
EF⊥MF,
同理,ME//CD,ME=CD/2=2,
三角形EFM是直角三角形,根据勾股定理,
EF=√(ME^2-MF^2)=√3,
同理EN=AB/2=1,
FN=CD/2=2,
在三角形EFN中,根据余弦定理,
cos<EFN=(EF^2+FN^2-EN^2)/(2*EF*FN)=√3/2,
<EFN=30度,
而FN//CD,
故<NFE就是EF和CD所成角,
故EF和CD所成角为30 度,
实际上,EF^2+EN^2=4,FN^2=4,
三角形EFN是直角三角形,
〈FEN=90度,
EN=FN/2
∴〈EFN=30度.
45°
设G为AD中点,连结GE、GF,则GE//CD,GF//AB。所以GF⊥EF。又因为GF=1/2AB=1,GE=1/2CD=2,则在直角三角形GEF中,EF=根号3。∠GEF=30°.因为EF与GE所成的角和EF与CD所成的角相等,所以结果为30°。
取AD的中点G,连接FG、EG
CD=4,AB=2
则FG//AB且FG=AB/2=1
EF垂直AB,所以EF⊥FG,即△GFE是直角三角形
GE//CD且GE=CD/2=2
∠EGF即为EF与CD所成的角
sin∠EGF=FG/GE= 1/2
即∠EGF=30度
即EF与CD所成的角为30度