已知x,y都是正数,求证:(x+y)(x^+y^)(x^3+y^3)≥8x^3y^3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 17:39:51
x){}K+t*_6}6cMݠlcӋVڕqڕq Hs$Sj~
U܁)Jb#J8
C}#Mh$#LE%Tl6B1LO?}N@ ;C
已知x,y都是正数,求证:(x+y)(x^+y^)(x^3+y^3)≥8x^3y^3
已知x,y都是正数,求证:(x+y)(x^+y^)(x^3+y^3)≥8x^3y^3
已知x,y都是正数,求证:(x+y)(x^+y^)(x^3+y^3)≥8x^3y^3
x,y都是正数,所以
x+y≥2(xy)^(1/2)
x^2+y^2≥2xy
x^3+y^3≥2(xy)^(3/2)
三式相乘
便得:(x+y)(x^+y^)(x^3+y^3)≥8x^3y^3