∫ x^2/(1+x^3)^2dx=?以及∫ x+1/(x^2+2x-3)^2dx=?我看懂了,你是把括号里的东西用y来代替,不过你第二题的答案和我书本后面的答案不一样,我书本后面的答案是 -1/2y +C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 03:58:06
∫ x^2/(1+x^3)^2dx=?以及∫ x+1/(x^2+2x-3)^2dx=?我看懂了,你是把括号里的东西用y来代替,不过你第二题的答案和我书本后面的答案不一样,我书本后面的答案是 -1/2y +C
∫ x^2/(1+x^3)^2dx=?以及∫ x+1/(x^2+2x-3)^2dx=?
我看懂了,你是把括号里的东西用y来代替,不过你第二题的答案和我书本后面的答案不一样,我书本后面的答案是 -1/2y +C
∫ x^2/(1+x^3)^2dx=?以及∫ x+1/(x^2+2x-3)^2dx=?我看懂了,你是把括号里的东西用y来代替,不过你第二题的答案和我书本后面的答案不一样,我书本后面的答案是 -1/2y +C
对,用基础方法解可以了,不用太复杂,2条的解法类似
ln|tan(t/2)|+c
1、∫ x^2/(1+x^3)^2dx
采用凑微分法,注意到(x^3)’=3x^2,所以
∫ x^2/(1+x^3)^2dx = (1/3)∫ 1/(1+x^3)^2d(x^3) = (1/3)∫ 1/(1+x^3)^2d(x^3 + 1)
= (1/3)∫ 1/y^2 dy = -1/(3y) + C
2、∫ x+1/(x^2+2x-3)^2dx
∫ x...
全部展开
1、∫ x^2/(1+x^3)^2dx
采用凑微分法,注意到(x^3)’=3x^2,所以
∫ x^2/(1+x^3)^2dx = (1/3)∫ 1/(1+x^3)^2d(x^3) = (1/3)∫ 1/(1+x^3)^2d(x^3 + 1)
= (1/3)∫ 1/y^2 dy = -1/(3y) + C
2、∫ x+1/(x^2+2x-3)^2dx
∫ x+1/(x^2+2x-3)^2dx = ∫ xdx + ∫1/(x^2+2x-3)^2dx
=(x^2)/2 + ∫1/(x-1)^2(x+3)^2dx :把(1/(x-1)(x+3))^2拆成 (1/4)*(1/(x-1) - 1/(x+3))^2
=(x^2)/2 + (1/4)∫1/(x-1)^2dx + (2/4)∫1/(x-1)(x+3)dx + (1/4)∫1/(x+3)^2dx
=(x^2)/2 + (1/4)∫1/(x-1)^2d(x-1) + (2/4)(1/4){∫1/(x-1)dx - ∫1/(x+3)dx}+ (1/4)∫1/(x+3)^2d(x+3)
到这一步已经拆成基本函数了,后面记不清原函数是否能直接合并,我是按照合并处理的
=(x^2)/2 -1/(4y) + (1/8)lnx - (1/8)lnx - 1/(4y) + C
= (x^2)/2 -1/(2y) + C
这个是最基础的方法,第一类换元法,我可以保证不会有更简单的方法了,你是一点儿也看不懂?
收起