已知函数f(x)=x|x-a|(x∈R)(1)判断f(x)的奇偶性并证明(2)求实数a的取值范围使函数g(x)=f(x)+2x+1在R上恒为增函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 15:19:37
已知函数f(x)=x|x-a|(x∈R)(1)判断f(x)的奇偶性并证明(2)求实数a的取值范围使函数g(x)=f(x)+2x+1在R上恒为增函数
x͒n@_ nHݲ:,E j%"@C&PU%b;JV\v/~W>P=_l9ng|XFV)#mdC$ wU&.Z ~?m^Ve?jƒum)

已知函数f(x)=x|x-a|(x∈R)(1)判断f(x)的奇偶性并证明(2)求实数a的取值范围使函数g(x)=f(x)+2x+1在R上恒为增函数
已知函数f(x)=x|x-a|(x∈R)(1)判断f(x)的奇偶性并证明(2)求实数a的取值范围使函数
g(x)=f(x)+2x+1在R上恒为增函数

已知函数f(x)=x|x-a|(x∈R)(1)判断f(x)的奇偶性并证明(2)求实数a的取值范围使函数g(x)=f(x)+2x+1在R上恒为增函数
1)当a=0时,f(x)=x|x|,f(-x)=-x|x|=-f(x),f(x)是奇函数;
当a≠0时,f(a)=0,f(-a)=-2a|a|≠0,f(x)非奇非偶.
(2)
①当x≥a 时,g(x)=x(x-a)+2x+1=x²+(2-a)x+1,
若g(x)为在[a,+∞)上增,则对称轴x=(a-2)/2≤a,解得a≥-2;
g(a)=2a+1
②当x③此外,要使g(x)在R上增,还须使g(x)在(-∞,a)上的最大值小于等于g(x)在[a,+∞)上的最小值,即 -a²+(a+2)a+1≤2a+1, 2a+1≤2a+1,成立
从而a 的取值范围是-2≤a≤-2/3