已知三个互不相等的有理数,既可以表示为1,m+n,m的形式,又可以表示为0,n/m,n的形式,求m^2001+n^2011的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:05:30
已知三个互不相等的有理数,既可以表示为1,m+n,m的形式,又可以表示为0,n/m,n的形式,求m^2001+n^2011的值
x͑J@_eґd\'yA A_TщԦ*5cPJ1M|0?qWNZp[dp=wrp3NUce?P#y@c>7#up6

已知三个互不相等的有理数,既可以表示为1,m+n,m的形式,又可以表示为0,n/m,n的形式,求m^2001+n^2011的值
已知三个互不相等的有理数,既可以表示为1,m+n,m的形式,又可以表示为0,n/m,n的形式,
求m^2001+n^2011的值

已知三个互不相等的有理数,既可以表示为1,m+n,m的形式,又可以表示为0,n/m,n的形式,求m^2001+n^2011的值
∵三个互不相等的有理数,既可以表示为1,m+n,m的形式,又可以表示为0,n/m,n的形式
又∵1≠0,∴m+n=0或n=0
又∵n/m≠0又≠1
∴n=1
而m+n=0,∴m=-1
∴m^2001+n^2011=0
希望能给你提供帮助

m=-1 n=1
n/m不为0, 则m不为0 ,那么m+n=0,(m+n)/m=0可推出n/m=-1,那么m=-1 n=1
m^2001+n^2011=0