求不定积分∫1/x(1-x^¼)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 10:57:12
求不定积分∫1/x(1-x^¼)dx
xUQKP+IHӐ4`o_3B[AeC }u0ldjnn]_޴}/ܛ.չWCH{;{srN ѷ zhů']%]ݲV傟yL'Vf1tto{{ORk"SML4mT(!aŒJK0/#+V)?*ev2Rp>O<뻒Y2<-U9F|kj!bmIL-+$b9Kkp@bk8 K7ɑNHW"rD!c\Ob䍪_j w,e *0T!#,X^eʥY7) GW5 0N'm6Foa!C01~Oa%uVXI*2B3^QqEj&!eΓD6Q7'?qb߲sθO:m}l><]NzalO?`v|s$f>nB ƞezR!jWļ3 74`Oz7 Cb/G40G1m6GqpC _W͢+LC

求不定积分∫1/x(1-x^¼)dx
求不定积分∫1/x(1-x^¼)dx

求不定积分∫1/x(1-x^¼)dx
您好,这道题用换元法,令t=x^¼,∫1/x(1-x^¼)dx=∫1/t^4(1-t)dt^4=∫4/t(1-t)dt=4∫[1/t+1/(1-t)]dt=4lnt-4ln(1-t)+C=lnx-4ln(1-x^¼)+C

∫1/[x(1-x^¼)]dx
let
x^(1/8) = siny
(1/8)x^(-7/8) dx = cosydy
dx = 8(siny)^7cosy dy
∫1/[x(1-x^¼)] dx
=∫(1/[ (siny)^8 (cosy)^2] )(8(siny)^7cosy dy)
=8∫ 1/(sinycosy) dy
=16∫ 1/sin2y dy
=8ln|csc2y-cot2y| + C

∫ 1/[x(1 - x^(1/4))] dx
= ∫ 1/[x^(1/4) • x^(3/4) • (1 - x^(1/4))] dx
= ∫ 1/[x^(1/4) • (1 - x^(1/4))] d[4x^(1/4)]
= 4∫ [(1 - x^(1/4)) + x^(1/4)]/[x^(1/4) • (1 - x^(1...

全部展开

∫ 1/[x(1 - x^(1/4))] dx
= ∫ 1/[x^(1/4) • x^(3/4) • (1 - x^(1/4))] dx
= ∫ 1/[x^(1/4) • (1 - x^(1/4))] d[4x^(1/4)]
= 4∫ [(1 - x^(1/4)) + x^(1/4)]/[x^(1/4) • (1 - x^(1/4))] d[x^(1/4)]
= 4∫ [1/x^(1/4) + 1/(1 - x^(1/4))] d[x^(1/4)]
= 4ln|x^(1/4)| + (- 4)ln|1 - x^(1/4)| + C
= ln|x| - 4ln|1 - x^(1/4)| + C
换元其实也比较麻烦,倒不如做的干净利落点吧。。

收起

∫1/x(1-x^¼)dx
令:x^1/4=t 则, x=t^4
所以, dx=4t^3dt
所以,∫1/x(1-x^¼)dx=∫4t^3/t^4(1-t)dt=4∫1/t(1-t)dt=4∫[1/t+1/(1-t)]dt [说明:1/t+1/(1-t)=1/t(1-t)]
...

全部展开

∫1/x(1-x^¼)dx
令:x^1/4=t 则, x=t^4
所以, dx=4t^3dt
所以,∫1/x(1-x^¼)dx=∫4t^3/t^4(1-t)dt=4∫1/t(1-t)dt=4∫[1/t+1/(1-t)]dt [说明:1/t+1/(1-t)=1/t(1-t)]
=4[lnt-ln(1-t)]+C=4lnt/(1-t)+C=4lnx^1/4/(1-x^1/4)+C
=lnx/(1-x^1/4)^4+C

收起