P是四边形ABCD内一点,且PA:PB:PC=2:1:3证明角APB为135°.JJJJJJJJJJJJJJJJJJJJJJ死了

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:27:34
P是四边形ABCD内一点,且PA:PB:PC=2:1:3证明角APB为135°.JJJJJJJJJJJJJJJJJJJJJJ死了
xSnA~3Y4Q43+9& EBJ`H &5q E>  3b7&};3Sf& K22jP.Knvh]wXzp}Ӆ7*_PU ;nafw ={{𵛍[7s8 !YاvϏ]Gz\]!7o:dMk"Ynv'RpJRu-2ց^L8\bBus̽LxJ0K:smgiؙ;L@[UvrQ~ųq @yE/Q_*Zd Q:r&,bEF[!O;5-ERECGDCewZD«5z5?ʡ

P是四边形ABCD内一点,且PA:PB:PC=2:1:3证明角APB为135°.JJJJJJJJJJJJJJJJJJJJJJ死了
P是四边形ABCD内一点,且PA:PB:PC=2:1:3证明角APB为135°
.JJJJJJJJJJJJJJJJJJJJJJ死了

P是四边形ABCD内一点,且PA:PB:PC=2:1:3证明角APB为135°.JJJJJJJJJJJJJJJJJJJJJJ死了
题目是不是错了,应该是正方形ABCD吧?
是的话,这样做:
将△BAP绕B点旋转90°使BA与BC重合,P点旋转后到Q点,连接PQ
因为△BAP≌△BCQ
所以AP=CQ,BP=BQ,∠ABP=∠CBQ,∠BPA=∠BQC
因为四边形DCBA是正方形
所以∠CBA=90°
所以∠ABP+∠CBP=90°
所以∠CBQ+∠CBP=90°
即∠PBQ=90°
所以△BPQ是等腰直角三角形
所以PQ=√2*BP,∠BQP=45°
因为PA=1,PB=2,PC=3
所以PQ=2√2,CQ=1
所以CP^2=9,PQ^2+CQ^2=8+K=9
所以CP^2=PQ^2+CQ^2
所以△CPQ是直角三角形且∠CQA=90°
所以∠BQC=90°+45°=135°
所以∠BPA=∠BQC=135°