求y=cosx+sin^2x+1的最值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:41:24
求y=cosx+sin^2x+1的最值
x){69B83/ΨBgs6I*+_`gC4IDPH! ¸`I#DPCDSRIBPH3.tgk@{'TU<ٜN, B`C?P~qAbԓ6`+jʆX&,-!ڨ.:Jdgbu7*mN

求y=cosx+sin^2x+1的最值
求y=cosx+sin^2x+1的最值

求y=cosx+sin^2x+1的最值
y=cosx+sin^2x+1
=cosx+1-cos^2x+1
=-cos^2x+cosx+2
=-(cos^2x-cosx+1/4)+9/4
=-(cosx-1/2)^2+9/4
因此
当cosx=1/2时有最大值9/4
当cosx=-1时有最小值0

y=cosx+sin²x+1
=cosx+1-cos²x+1
=-cos²x+cosx+2
=-(cosx-1/2)²+9/4
当cos=1/2时,y有最大值=9/4
当cosx=-1时,y有最小值=0