函数是什么?怎么算的?怎么求?有例题给我看看

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:20:07
函数是什么?怎么算的?怎么求?有例题给我看看
xZOYWi('lӣijջ#MK#>6Y =4`lcn a] Dڷa[H;T{ι{n} h5Uӊuߙ,YekuV'ӿ3KejɗV)o<Q}<֜(Fˈxݪtj}鴯0its"&YXFA$k"."WgV!" $KրeE  X3q1NBNK -9?oT/2i 0t_"{GĨ?,ǵ3d{mr\'GR{2>#~6 DPP#6jdp@$j!^u9%sS0 AɆ 8h],hbݙ6d e22%_*H }OLaO`x`h8Cǵpp2o)>B&ѐd88 2F"}bQJ>OG&JVkMAJ%nޛ::"lͲ$9WڧYcg~ Ii\$Iy<(NwYk3 UsmǮB0Ne$L,U1W6:TifUh:x/0es6g֘B=ܷ )LwOݽ(UWenJ]/E{KaiѦԺ q?$iHJ\9{둜%|Ʈf ;{"3v!Mhc׿y,"&VakX쫚Y|kWdR uT 3dd];ڐ =-7gxP!Iy"\qU{#7Y/#E?F:43ڹ\-IIׂ ,\>E*CFY:N,r/u=p+VR6Nc270Ϻaމo/̘jZ\Z&D¿'i "}L ɐJ9ڜ#D˰Ӕ*ˈȺ)@: " }H[Bdf8YtuPBxLA t0cLOզ}i_k`9n"G2u򈏜(*-^Z"]A(1$D2 tZ(v> k1Ruiewow`J!ӵ3ЩNuDּB3+3fiپʋ}NBp XPA&kD}A.!(y":Vb~3E|;JF؇\m58 igQLtxR1kܴ Oyq% V;k pnv`svM #Ps)&Lg͞U^wWTȤj]^WDᄫ\,`!g!qնw`RveS7='|p2IPjP4B/Q.(+2xxCN@tz@&m4(ߧ6B(D1!S0{}Q.e*R4RM W>/ )D[7|6޻g(D\;#w9_$ C~ z#пS{Ï ܥwo;8jۧtЀN\@/TDk_Р"qU>CYDbuPx#zR2+QG Нi\D}rU] ) Pɺ5ݵ- ax'77tlSՖ0!DK[㤹 F7>؞}y7AmIP>~(H"ET܃ʺc nGp "qRa輝3?!F=[q4ut8_k2~Cߩ=_TnpEs]2!?Aλq#`jWz";7.8Ŏ^Lny_8~>iT4Hu98Î]煊t(Azm n5[>w̷n4eoE)j tSz!:34#H/q䝑{Wz <ޖ='2J<:AThn4k Q$>;h&r؋3Hїh֟X| 9zz*Rʸ-:(jjuW-/7ePL;wgJs{~/գ'24$̰ٛEn:W.*HĚkKyN`b# M#Ÿ9}OcrFta:>n)fw/~Ěha5:K|:檬AݭSC;I8㛳9n&QeѣWԣkmgu8fd_*yyKszLŨt cNS^YXY-zD' cN@d,yg Lic6REo?ieːe*!TKΫjg8ʐvS0.2 ĘY(uG-WGEQUQr`jX@A˾snA]8I٬9VN±("_фaᒏe6l'7؁{/74:D>H.O2N6"t@NrƤtq,58i߹c7g"/RGP6O[|ykUF`8NR⭬ 0vOƠĮ'|DQL"l\ C. h!+K?IxD9 s;cn"4 2܎bxGחee/̈Ww P!N+P>.y\y0yB2nOKf)zdfT92C_ 'X

函数是什么?怎么算的?怎么求?有例题给我看看
函数是什么?怎么算的?怎么求?有例题给我看看

函数是什么?怎么算的?怎么求?有例题给我看看
函数
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素
(这只是一元函数f(x)=y的情况,请按英文原文把普遍定义给出,谢谢).
----A variable so related to another that for each value assumed by one there is a value determined for the other.
应变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值.
----A rule of correspondence between two sets such that there is a unique element in the second set assigned to each element in the first set.
函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量.
函数的概念对于数学和数量学的每一个分支来说都是最基础的.
术语函数,映射,对应,变换通常都有同一个意思.
但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系.可以说函数包含于映射.
历史
函数这个数学名词是莱布尼兹在1694年开始使用的,以描述曲线的一个相关量,如曲线的斜率或者曲线上的某一点.莱布尼兹所指的函数现在被称作可导函数,数学家之外的普通人一般接触到的函数即属此类.对于可导函数可以讨论它的极限和导数.此两者描述了函数输出值的变化同输入值变化的关系,是微积分学的基础.
1718年,约翰·贝努里(en:Johann Bernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量.”1748年,约翰·贝努里的学生欧拉(Leonhard Euler)在《无穷分析引论》一书中说:“一个变量的函数是由该变量和一些数或[常量]]以任何一种方式构成的解析表达式”.例如f(x) = sin(x) + x3.1775年,欧拉在《微分学原理》一书中又提出了函数的一个定义:“如果某些量以如下方式依赖于另一些量,即当后者变化时,前者本身也发生变化,则称前一些量是后一些量的函数.”
19世纪的数学家开始对数学的各个分支作规范整理.维尔斯特拉斯(Karl Weierstrass)提出将微积分学建立在算术,而不是几何的基础上,因而更趋向于欧拉的定义.
通过扩展函数的定义,数学家能够对一些“奇怪”的数学对象进行研究,例如不可导的连续函数.这些函数曾经被认为只具有理论价值,迟至20世纪初时它们仍被视作“怪物”.稍后,人们发现这些函数在对如布朗运动之类的物理现象进行建模时有重要的作用.
到19世纪末,数学家开始尝试利用集合论来规范数学.他们试图将每一类数学对象定义为一个集合.狄利克雷(Johann Peter Gustav Lejeune Dirichlet)给出了现代正式的函数定义.狄利克雷的定义将函数视作数学关系的特例.然而对于实际应用的情况,现代定义和欧拉定义的区别可以忽略不计.
二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax²+bx+c(a,b,c为常数,a≠0)
则称y为x的二次函数.
二次函数表达式的右边通常为二次三项式.
II.二次函数的三种表达式
一般式:y=ax²+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)²+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b²)/4a x1,x2=(-b±√b²-4ac)/2a
III.二次函数的图象
在平面直角坐标系中作出二次函数y=x²的图象,
可以看出,二次函数的图象是一条抛物线.
IV.抛物线的性质
1.抛物线是轴对称图形.对称轴为直线
x = -b/2a.
对称轴与抛物线唯一的交点为抛物线的顶点P.
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b²)/4a ].
当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上.
3.二次项系数a决定抛物线的开口方向和大小.
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口.
|a|越大,则抛物线的开口越小.
4.一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右.
5.常数项c决定抛物线与y轴交点.
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b²-4ac>0时,抛物线与x轴有2个交点.
Δ= b²-4ac=0时,抛物线与x轴有1个交点.
Δ= b²-4ac<0时,抛物线与x轴没有交点.
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax²+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax²+bx+c=0
此时,函数图象与x轴有无交点即方程有无实数根.
函数与x轴交点的横坐标即为方程的根.
一次函数
I、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数.
特别地,当b=0时,y是x的正比例函数.
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即 △y/△x=k
III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线.因此,作一次函数的图象只需知道2点,并连成直线即可.
2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.
3. k,b与函数图象所在象限.
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小.
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限.
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象.
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限.
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式.
(1)设一次函数的表达式(也叫解析式)为y=kx+b.
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:
y1=kx1+b① 和 y2=kx2+b②.
(3)解这个二元一次方程,得到k,b的值.
(4)最后得到一次函数的表达式.
V、一次函数在生活中的应用
1.当时间t一定,距离s是速度v的一次函数.s=vt.
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数.设水池中原有水量S.g=S-ft.
反比例函数
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数.
自变量x的取值范围是不等于0的一切实数.
反比例函数的图像为双曲线.
如图,上面给出了k分别为正和负(2和-2)时的函数图像.
三角函数
三角函数是数学中属于初等函数中的超越函数的一类函数.它们的本质是任意角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.另一种定义是在直角三角形中,但并不完全.现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系.
由于三角函数的周期性,它并不具有单值函数意义上的反函数.
三角函数在复数中有较为重要的应用.在物理学中,三角函数也是常用的工具.
它有六种基本函数:
函数名 正弦 余弦 正切 余切 正割 余割
符号 sin cos tan cot sec csc
正弦函数 sin(A)=a/h(a是对边,b是邻边,h是斜边)
余弦函数 cos(A)=b/h
正切函数 tan(A)=a/b
余切函数 cot(A)=b/a
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素.函数的概念对于数学和数量学的每一个分支来说都是最基础的.
术语函数,映射,对应,变换通常都是同一个意思.
简而言之,函数是将唯一的输出值赋予每一输入的“法则”.这一“法则”可以用函数表达式、数学关系,或者一个将输入值与输出值对应列出的简单表格来表示.函数最重要的性质是其决定性,即同一输入总是对应同一输出(注意,反之未必成立).从这种视角,可以将函数看作“机器”或者“黑盒”,它将有效的输入值变换为唯一的输出值.通常将输入值称作函数的参数,将输出值称作函数的值.
最常见的函数的参数和函数值都是数,其对应关系用函数式表示,函数值可以通过直接将参数值代入函数式得到.如下例,
f(x) = x2 ,x 的平方即是函数值.
也可以将函数很简单的推广到与多个参量相关的情况.例如:
g(x,y) = xy 有两个参量x和y,以乘积xy为值.与前面不同,这一“法则”与两个输入相关.其实,可以将这两个输入看作一个有序对(x, y),记g为以这个有序对(x, y)作参数的函数,这个函数的值是xy.
科学研究中经常出现未知或不能给出表达式的函数.例如地球上不同时刻温度的分布,这一函数以地点和时间为参量,以某一地点、某一时刻的温度作为输出.
函数的概念并不局限于数的计算,甚至也不局限于计算.函数的数学概念更为宽泛,而且不仅仅包括数之间的映射关系.函数将“定义域”(输入集)与“对映域”(可能输出集)联系起来,使得定义域的每一个元素都唯一对应对映域中的一个元素.函数,如下文所述,被抽象定义为确定的数学关系.由于函数定义的一般性,函数概念对于几乎所有的数学分支都是很基本的.

函数是什么?怎么算的?怎么求?有例题给我看看 二元一次函数怎么解答给我个完整例题 相对原子质量怎么求?能不能给我个例题, 函数的值域怎么求?求方法,分类和例题. 函数的值域该怎么求最好有例题并且有方法适用各种题型 求极限的存在.谁能给我解释一下这个例题怎么怎么的就化简成1了 函数的单调性和奇偶性怎么证明啊?有哪些步骤,顺便给个例题!30分!详细的好的我+分! 对数函数定义域值域怎么求我刚上高一,对数函数没学好,(最好有例题解析) 电场强度的方向怎么判断?给我些例题 请问数学的一次函数和反比例函数应该怎么学给我讲讲几个例题,教我一些学一次函数和反比例函数的好方法 怎么计算二次函数的最大值或最小值?最好有例题帮我下,我突然想不起来怎么做了, 洛必达法则是什么?怎么求极限,出道简单的例题, 怎么求函数的左右极限.右极限比较好求,就是不知道左极限 的负号怎么加到函数中,有两个例题,麻烦大神们帮我看看.(4)题目:证明是否存在极限 初二负整数指数幂的代入求值的题目怎么解答举几个例题并解答 有没有例题啊,若有就请将解答过程给我看 指数函数的复合函数单调性怎么判断?最好给一些例题, 怎么根据题意给的替代效应和收入效应判断该商品是什么商品(西方经济学) 这有几个例题.怎么根据题意给的替代效应和收入效应判断该商品是什么商品(西方经济学) 这有几个例题. 求 根据三视图和已知的条件怎么求该物体的表面积和体积?给我举些例题和解析到底怎么计算用什么方法?我做的题大都出错,希望有好的方法! 函数的定义域怎么求?求方法和分类和例题.