怎么作两个圆的外切圆.两个不等的圆的位置关系为外离,如何作一个圆与这两个圆相切,与这两个圆相切的圆的圆心有什么规律.上图圆A与圆B是两个不等的圆,位置关系为外离,圆1、圆2、圆3、

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:42:24
怎么作两个圆的外切圆.两个不等的圆的位置关系为外离,如何作一个圆与这两个圆相切,与这两个圆相切的圆的圆心有什么规律.上图圆A与圆B是两个不等的圆,位置关系为外离,圆1、圆2、圆3、
xVNG~*Q<dž'^O&Tvrtn"S{v)JM^'4.IBԭ;c1dbY%R 1$DX!&2e9TU벉%K–hd,@q¢b 32eCW6놦Ȍ6 +ߧ.XhQڑTr9|yyo[C/r"d-m^sy/.u6~if?\W07~PJ|ve?4_Yy^*ү`"+v(p@6|r->K[pT&zru&XWg"" e1vJ\áL\cdOJ({Jnڻ_^]AdI~}ޝ"eowIn併zlmP{Ԛ#jl*"ebIO{ҙGe#n"8c?JM"xJ7gS fUk6 EM2.qB%#HdD7d2`3(ғ,Kb"cM$n2*$#x0*  SbhԐ̀wdfRF26cܐxы Z'ZH;ub%ram.oLU=<+"5}g/ouX K:tCEú.fF>+!LYqP814+XJ2>VTD>LYf\1KUBȰ1Bbvp5:%bI'Hƭ^O&])R|:Tmk jUaqQ4 l'blz1܌bf 7BzB 5>xڠу[Ms./<\&i;

怎么作两个圆的外切圆.两个不等的圆的位置关系为外离,如何作一个圆与这两个圆相切,与这两个圆相切的圆的圆心有什么规律.上图圆A与圆B是两个不等的圆,位置关系为外离,圆1、圆2、圆3、
怎么作两个圆的外切圆.
两个不等的圆的位置关系为外离,如何作一个圆与这两个圆相切,与这两个圆相切的圆的圆心有什么规律.

上图圆A与圆B是两个不等的圆,位置关系为外离,圆1、圆2、圆3、圆4、圆5都与圆A、圆B相切.请说出圆1、圆2、圆3、圆4等等所有都与圆A、圆B相切的圆的圆心的规律.
尽可能附加图片,并附上作图顺序和理由,

怎么作两个圆的外切圆.两个不等的圆的位置关系为外离,如何作一个圆与这两个圆相切,与这两个圆相切的圆的圆心有什么规律.上图圆A与圆B是两个不等的圆,位置关系为外离,圆1、圆2、圆3、
设⊙A, ⊙B半径分别为a, b.
半径为r的⊙P与二者都外切, 则有AP = a+r, BP = b+r.
相减得AP-BP = a-b, AP-BP为定值.
因此圆心P的轨迹为以A, B为焦点, 实轴长|a-b|的双曲线的一支.
同样讨论易知, 与⊙A, ⊙B都内切的圆的圆心的轨迹是该双曲线的另一支.
此外还有与⊙A, ⊙B分别内切外切的圆, 其圆心的轨迹是以A, B为焦点, |a+b|为实轴的另一双曲线.

作图步骤很简单,比如作与两圆都外切的圆 (其它相切情况作法都是类似的).

任取r ≥ |a-b|.
以A为圆心作半径a+r的圆,以B为圆心作半径b+r的圆,两圆交于点P(两个交点可任取一个).
连接PA,交⊙A于C.
以P为圆心PC为半径作⊙P,则与⊙A, ⊙B都外切.
理由:由作图法知PA = a+r,PB = b+r.
于是⊙P半径PC = PA-AC = r.
P到⊙A, ⊙B的圆心距分别等于半径和a+r与b+r,故与二者都外切.
另外,图中画出了P的轨迹,是双曲线的一支.
下图显示了4种相切情况,并画出了圆心轨迹.

1、以A为圆心,⊙B的半径为半径作⊙圆心A

2、以AB为直径作⊙C交以上所作圆于D,连结BD

3、延长AD交⊙A于E

4、过E作BD的延长线即为⊙A、⊙B的公切线。