(1) 令bn=1/a(n-1)an,求数列{bn}的前n项和Tn (其中an=2n-1)(2) 令bn=1/a(n+1)an,求数列{bn}的前n项和Tn,试比较Tn与3/2的大小 (其中an=-2n+5)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:43:29
xR]K@+aAH|e&KLvMjMJ/mB*>Ef'1j["s=9;Iٻ<[EgktG yBNL7խWR>~W}?ԟcꕣ7SloBf/7/GpSWl8}%r =7j3({wI8gN\>1TK*q9@Eƣ*ȖC5Z/"#"!3TżNP!e)@B 7/EC2J8TYE XQ,$]%11
A^"xa7^H, S4su VYJ{\MMN+Lބ.yܦȳH$:ȗؗ$4˗&n[i
}D-`
`
=:fFE {nN"{r-B-ine[yJe-D&:+[
(1) 令bn=1/a(n-1)an,求数列{bn}的前n项和Tn (其中an=2n-1)(2) 令bn=1/a(n+1)an,求数列{bn}的前n项和Tn,试比较Tn与3/2的大小 (其中an=-2n+5)
(1) 令bn=1/a(n-1)an,求数列{bn}的前n项和Tn (其中an=2n-1)
(2) 令bn=1/a(n+1)an,求数列{bn}的前n项和Tn,试比较Tn与3/2的大小 (其中an=-2n+5)
(1) 令bn=1/a(n-1)an,求数列{bn}的前n项和Tn (其中an=2n-1)(2) 令bn=1/a(n+1)an,求数列{bn}的前n项和Tn,试比较Tn与3/2的大小 (其中an=-2n+5)
(1)把an=2n-1代入bn=1/a(n-1)an=1/(2(n-1)-1)(2n-1)=1/(2n-3)(2n-1)
Tn=b1+b2+b3....+bn-1+bn=1/(2-3)(2-1)+1/(4-3)(4-1)+1/(6-3)(6-1)+....+1/(2n-3)(2n-1)
=-1+(1/2)(1/(4-3)-1/(4-1)+1/(6-3)-1/(6-1)+....1/(2n-5)-1/(2n-3)+1/(2n-3)-1/(2n-1))
=-1+(1/2)(1-1/(2n-1))=-1+(n-1)/(2n-1)=-n/(2n-1)