求证lim(n→∞)[2^(1/n)]=1分析和证明都要.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 05:50:36
x){Ɯ\Gmuӌ60ӌ5|lބzJ{ټŲF="}*ph/!U3{f{fa :vt 5BvbR9y kr2¯hA(zVB@ʺhnӎϧ Я4[XZb[ M_|K'f5BB+'/ĪLNφxf.H(h~qAb( q3
求证lim(n→∞)[2^(1/n)]=1分析和证明都要.
求证lim(n→∞)[2^(1/n)]=1
分析和证明都要.
求证lim(n→∞)[2^(1/n)]=1分析和证明都要.
设y=(1+1/n+1/n^2)^n=[1+(n+1)/n^2]^n所以lny=nln[1+(n+1)/n^2]=[n*(n+1)/n^2]ln[1+(n+1)/n^2]^[n^2/(n+1)]=[(n^2+n)/n^2]ln[1+(n+1)/n^2]^[n^2/(n+1)]利用lim(1+1/x)^x=ekmqux趋向无穷大aeilimlny=1*lne=1ycgk所以limy=e( n→∞)
求证lim(n→∞)[2^(1/n)]=1分析和证明都要.
求证lim(n→∞)n/(2^n)=0没有学到洛毕塔法则~
求证lim(1+1/n+1/n2)n =e ( n→∞)式中的2是平方!
求证lim n/(n!)^(1/n)=e
求极限 lim(n→∞) tan^n (π/4 + 2/n) lim(n→∞)tan^n(π/4+2/n) =lim(n→∞)[(tan(π/4)+tan(2/n))/(1-tan(π/4)tan(2/n))]^n =lim(n→∞)[(1+tan(2/n))/(1-tan(2/n))]^n =lim(n→∞)(1+tan(2/n))^n/(1-tan(2/n))^n (1) 因为 lim(n→∞)(1+tan(2/n)
用数列极限证明lim(n→∞)(n^-2)/(n^+n+1)=1中证明如下:lim(n→∞)3n+1/5n-4
极限 lim(n→∞)[(n!)^2/(2n)!]=
lim(n→∞) 2^n/n!=0
求lim n→∞ (1+2/n)^n+3
lim(n→∞)[1-(2n/n+3)]
lim(n→∞)(2n-1/n+3)
lim n→∞ n^(3/2)* (n+1)^(1/2)* (1-cos(π/n))=?
lim(n→∞)(2n-1/2n+1)^n= 大一高数~
lim n→∞ n/√(2n+1)(n+1)=
证明lim(n→∞){n-根号下n^2-n}=1/2
lim n->∞{2/((1+ 1/n )^n)}=?
lim(n→∞)(根号n+2-根号n)*根号n-1=?
n→∞ lim(n+3/n+1)^2n=