求值:log2cosπ/9+log2cos2π/9+log2cos4π/9

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 19:06:57
求值:log2cosπ/9+log2cos2π/9+log2cos4π/9
x){iÞ{f%oзԆ9& MR>Z lȲiSV=m}|5Oš`:PtFgՇ*j07 (`B@PDXP >lA"8h8kl_\g0G_,_$pؗ

求值:log2cosπ/9+log2cos2π/9+log2cos4π/9
求值:log2cosπ/9+log2cos2π/9+log2cos4π/9

求值:log2cosπ/9+log2cos2π/9+log2cos4π/9
利用2倍角公式
cosπ/9*cos2π/9*cos4π/9
=[sinπ/9*cosπ/9*cos2π/9*cos4π/9]/sinπ/9
=[1/2sin2π/9*cos2π/9*cos4π/9]/sinπ/9
=[1/4sin4π/9*cos4π/9]/sinπ/9
=[1/8sin8π/9]/sinπ/9
=[1/8sinπ/9]/[sinπ/9]
=1/8
log2cosπ/9+log2cos2π/9+log2cos4π/9
=log2(cosπ/9*cos2π/9*cos4π/9)
=log2(1/8)
=-3

'

误解