(x+y)^2=18,(x-y)^2=6,分别求x^2+y^2及x^2+3xy+y^2的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:22:58
(x+y)^2=18,(x-y)^2=6,分别求x^2+y^2及x^2+3xy+y^2的值
x)ӨЮԌ35Ѩ3tv=XlcSEve.˸{>i"} tPv[RmJIP1]X}ӟr\[9`fFpy0E`5ƶF6yvP؀9P# Zla6@t*3M iH1aF09V)M N

(x+y)^2=18,(x-y)^2=6,分别求x^2+y^2及x^2+3xy+y^2的值
(x+y)^2=18,(x-y)^2=6,分别求x^2+y^2及x^2+3xy+y^2的值

(x+y)^2=18,(x-y)^2=6,分别求x^2+y^2及x^2+3xy+y^2的值
(x+y)^2=18=x^2+y^2+2xy,(x-y)^2=x^2+y^2-2xy=6
得出xy=3
x^2+y^2=(x+y)^2-2xy=18-6=12
x^2+3xy+y^2==(x+y)^2+xy=18+3=21

x^2+y^2=12
x^2+3xy+y^2=21

x^2+y^2=[(x+y)^2+(x-y)^2]/2=(18+6)/2=12
x^2+3xy+y^2=(x+y)^2+xy=(x+y)^2+[(x+y)^2-(x-y)^2]/4=18+(18-6)/4=21