cos^2 π/8+cos ^2 3π/8+ cos^2 5π/8+cos^2 7π/8=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:32:33
cos^2 π/8+cos ^2 3π/8+ cos^2 5π/8+cos^2 7π/8=?
x)K/3R8ߠo d*`D&dض6IEh/!۾';zNyٴɮO[<ӯtɪv?o^dWX ԫqAFM[] 6%u6<ٽ$1V, b""p" ='!9o>AFtzNgly>eӎ w]Ztĥ3=oن0$:$)l$A*T+.-0o z1)84!GjCao  Ԏ jmF׈A

cos^2 π/8+cos ^2 3π/8+ cos^2 5π/8+cos^2 7π/8=?
cos^2 π/8+cos ^2 3π/8+ cos^2 5π/8+cos^2 7π/8=?

cos^2 π/8+cos ^2 3π/8+ cos^2 5π/8+cos^2 7π/8=?
不同那些公式,太麻烦了
因为cos(π-α)=-cos α
所以cos 7π/8= -cos π/8
cos^2 7π/8=cos^2 π/8
同理cos^2 5π/8=cos^2 3π/8
原式=2(cos^2 π/8+cos^2 3π/8)
这里用到cos(π/2-α)=sin α
显然cos^2 π/8=sin^2 3π/8
原式=2(sin^2 3π/8+cos^2 3π/8)
=2

cos²(π/8)+ cos²(3π/8)+ cos²(5π/8)+ cos²(7π/8)
=[1+cos(π/4)]/2+[1+cos(3π/4)]/2+[1+cos(5π/4)]/2+[1+cos(7π/4)]/2
=2+[cos(π/4)+ cos(3π/4)+ cos(5π/4)+ cos(7π/4)]/2
=2