已知m+n=6,怎么求1/m+4/n的最小值好像是用基本不等式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:48:09
已知m+n=6,怎么求1/m+4/n的最小值好像是用基本不等式
xRmKP;wie?$~ Q$lbeN-_m?ap<iL$I >,%q҂ H' Ϭf9b8Cdj  arxR_7EXBMu+B:G-Q+R^!AE>V̺bo(MDggW0$!iBO*:F/y%d 1LdYB Me'q|0[%)^B|uݡݔxmQ)s*Uk;~1-ux :crU{mc$

已知m+n=6,怎么求1/m+4/n的最小值好像是用基本不等式
已知m+n=6,怎么求1/m+4/n的最小值
好像是用基本不等式

已知m+n=6,怎么求1/m+4/n的最小值好像是用基本不等式
用基本不等式:
1/m+4/n
=(1/6)·(m+n)(1/m+4/n)
=5/6+(1/6[(4m/n)+(n/m)]
≥5/6+(2/6)√(4m/n·n/m)
=3/2.
∴4m/n=n/m且m+n=6,
即m=2,n=4时,
所求最小值为:3/2.
用柯西不等式法:
1/m+4/n
≥(1+2)^2/(m+n)
=3/2,
故所求最小值为:3/2.
判别式法:
设t=1/m+4/n=1/m+4/(6-m)
→tm^2+(3-6t)m+6=0.
△=(3-6t)^2-24t≥0
→9-36t+36t^2-24t≥0
→36t^2-60t+9≥0
解得,t≥3/2,或t≤1/6(舍).
故所求最小值为:3/2.
不论那一种方法,都应有约束条件:m>0,n>0,楼主为何不说明?