f(x)=x^2+ax+bcosx 设{x|f(x)=0,x属于R}={x|f(f(x))=0,x属于R}不等于空集 求所有满足的a,b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 17:40:40
f(x)=x^2+ax+bcosx 设{x|f(x)=0,x属于R}={x|f(f(x))=0,x属于R}不等于空集 求所有满足的a,b
x)KӨд3NNJ/Pxn+j2:O7{/޹̅ʀ$}yrm 66=lx6/m~>%Q'&HV ?1h4 2`泮 ['?m]鋧B|Ա% ImFv&LwV&B5C$&h .1ʅbY㓽q{jЧ0}Ϧ/xn޳-cB  NMԁHOǴG6&$&j$h$فD^

f(x)=x^2+ax+bcosx 设{x|f(x)=0,x属于R}={x|f(f(x))=0,x属于R}不等于空集 求所有满足的a,b
f(x)=x^2+ax+bcosx 设{x|f(x)=0,x属于R}={x|f(f(x))=0,x属于R}不等于空集 求所有满足的a,b

f(x)=x^2+ax+bcosx 设{x|f(x)=0,x属于R}={x|f(f(x))=0,x属于R}不等于空集 求所有满足的a,b
{x|f(x)=0,x属于R}={x|f(f(x))=0,x属于R}有
f(0)=0
把x=0代入f(x)=x^2+ax+bcosx 得f(0)=b
∴b=0
f(x)=x^2+ax=x(x+a)
∴{x|f(x)=0,x属于R}={0,-a}
f(f(x))=f(x^2+ax)=(x^2+ax)^2+a(x^2+ax)=x(x+a)(x^2+ax+a)
要使{x|f(f(x))=0,x属于R}={0,-a}有x^2+ax+a=0无实数根或x^2+ax+a=0的根是0和-a,有
a=0或△=a^2-4a=a(a-4)