设A.B.C.D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:59:49
设A.B.C.D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是
xRJ@~- M- ba7w)VhERiEIE*%I=l* ͷ~3j2iy=o[t)Z׿DxAY3$M6. qe4L6PۇTr,onVQ7_w> 4{~ e_A%i˨ΰ +[< Jq\S3bD"KVNX< fŴ_YʁݧГpz P :P͘^tW'|RGTX4LPF,r7LUz9v8}` <5:,&4[У@ULۣ)

设A.B.C.D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是
设A.B.C.D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是

设A.B.C.D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是
设AB=a,AC=b,AD=c
由A.B.C.D是半径为2的球面上的四点且AB⊥AC,AD⊥AC,AB⊥AD有
√a^2+b^2+c^2=2X2=4 有a^2+b^2+c^2=16
ab≤1/2(a^2+b^2) bc≤1/2(b^2+c^2) ac≤1/2(a^2+c^2)
S△ABC+S△ABD+S△ACD=1/2(ab+bc+ac) ≤1/2[1/2(a^2+b^2) +1/2(b^2+c^2) +1/2(a^2+c^2)]
S△ABC+S△ABD+S△ACD≤1/2(a^2+b^2+c^2)=8“当且仅当a=b=c=4√3/3时取等”

设AB=a,AC=b,AD=c,
因为AB,AC,AD两两互相垂直
所以a2+b2+c2=16
S△ABC+S△ACD+S△ADB=0.5(ab+ac+bc)≤ 0.5(a2+b2+c2)=8即最大值8

半径为1的球面上的四点A,B,C,D是正四面体的顶点则A与B两点见的球面距离为 半径为1的球面上的四点A,B,C,D是正四面体的顶点则A与B两点见的球面距离为 半径为1的球面上的四点A,B,C,D是正四面体的顶点则A与B两点见的球面距离为 设A.B.C.D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是 半径为1的球面上的四点 是正四面体的顶点,则A与B两点间的球面距离为半径为1的球面上的四点A,,C,D是正四面体的顶点,则A与B两点间的球面距离为 已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为 已知在半径为2的球面上有A,B,C,D 四点,若AB=CD=2,则四面体ABCD的体积的最大值为? 已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为 半径为5的球面上有A.B.C.D.四点,若AB为6,CD为8,则四面体ABCD的体积的最大值是多少? 半径为5的球面上有A.B.C.D.四点,若AB为6,CD为8,则四面体ABCD的体积的最大值是多少? 2010全国1:已知在半径为2的球面上A B C D四点 AB=CD=2 则四面体ABCD体积最大值为 答案是三分之四倍根号三 原解析看不懂 求指教 设A.B.C.D是球面上的四点,在同一平面内AB=BC=CD=DA=3球心到平面的距离是球半径的一半则球体积是? 超简单的立体几何证明题设A、B、C、D是半径为r的球面上的四点,且满足AB⊥AC、AD⊥AC、AB⊥AD,求证:AB²+AC²+AD²=(2r)²能说清楚一点吗? 设A、B、C是半径为1的球面上的三点,A与B、B与C、C与A每两点的球面距离均为π/2,O为球心.求(1)∠AOB的大小设A、B、C是半径为1的球面上的三点,A与B、B与C、C与A每两点的球面距离均为π/2,O为球心. A,B,C,D是半径为1的球面上四点,且AB,AC,AD两两互相垂直,那么三角新ABC,ABD,ACD的面积和最大值是? 设A,B,C,D是半径为R的球面上的四点,且AB,AC,AD两两相互垂直,则△ABC,△ABD,△ACD面积之和S△ABC+S△ABD+S△ACD的最大值为( )A.R^2 B.3R^2 C.4R^2D.2R^2 晕 题目选项里面都没有这个答案 R^2代表的是R的平方 数学 1.一直在半径为2的球面上有A,B,C,D四点,若AB=CD=2,则四面体ABCD的体积的最大值为多少?拜托最好能画下图!解释的详细一点! 11. 已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为( )