证明:两个数列an,bn ,an等比数列,bn等差数列,a1=b1=1 ,a2>0 ,a10=b10 ,则b2≥a2.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:26:18
证明:两个数列an,bn ,an等比数列,bn等差数列,a1=b1=1 ,a2>0 ,a10=b10 ,则b2≥a2.
xRNPY@oW4SL%`ZE &_X1wnq/8%覙{f9)![1yu[ݩvR zbx:3*3m̠7\=8fXPK>xݎ;xe  b:",kA)x+$qgPOsPIe<5HAL#1i˖mN[[T)~@0hԞc9lΣ,/[T #y<_;rTddl*K [),vtL>S9ha@>1lc}k8'}~W{A,Q_f$G|9D)i\\[OEx>%s}&n? U͌ek?o_5alTmuk_0g

证明:两个数列an,bn ,an等比数列,bn等差数列,a1=b1=1 ,a2>0 ,a10=b10 ,则b2≥a2.
证明:两个数列an,bn ,an等比数列,bn等差数列,a1=b1=1 ,a2>0 ,a10=b10 ,则b2≥a2.

证明:两个数列an,bn ,an等比数列,bn等差数列,a1=b1=1 ,a2>0 ,a10=b10 ,则b2≥a2.
首先,设等差数列公差为 d,等比数列公比为q 所以 b10=1+9d a10=q^9
由a10=b10知,1+9d= q^9 (1)
所求 b2>=a2 等价于 1+d>=q 把(1)代入有 1+ (q^9-1)/9 -q >= 0 即q^9-9q+8>=0 (2)
我们设f(x)就是(2)式等号左边
f(x)=q^9 -9q +8 f'(x)= 9q^8-9 =9(q^8-1)
由于 a2=q>0 所以我们知道 00 .所以f(x)最小值在 q=1时候取到.为 f(1)= 1^9 -9*1 +8=0 即 f(x)>=0 当 q>0 时候.
这样我们也就证明了 (2)式成立,等价于 b2>= a2
渣排版,见谅.