设f(x)在[0,π]上连续,且∫f(x)dx=0,∫f(x)cosxdx=0,证明:在[0,π]内有两个不同的p1,p2,使得f(p1)=f(p2)=0.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:48:45
设f(x)在[0,π]上连续,且∫f(x)dx=0,∫f(x)cosxdx=0,证明:在[0,π]内有两个不同的p1,p2,使得f(p1)=f(p2)=0.
xSn@v`G.xbM%U<WMӈHDDim M Iq;3H  ?s9sZJ:ĸ*ol/~όީX|Zy-x C[s:wA$g>~q)֪ep-aE}%W֚AryUҕ>ƗB+'EBCr&@thWei%ʾ9Ny Q϶'\HN(7E+ﰇsE X$fM'xr;y7aZŬw."vyY "&"  xa:=e"RQY!j!El،bmBλ]C·s?}' !?>H̞,!-)L=4FBs8ލhʮ)4=_-YI.QGh+u8

设f(x)在[0,π]上连续,且∫f(x)dx=0,∫f(x)cosxdx=0,证明:在[0,π]内有两个不同的p1,p2,使得f(p1)=f(p2)=0.
设f(x)在[0,π]上连续,且∫<0,π>f(x)dx=0,∫<0,π>f(x)cosxdx=0,证明:在[0,π]内有两个不同的p1,p2,使得f(p1)=f(p2)=0.

设f(x)在[0,π]上连续,且∫f(x)dx=0,∫f(x)cosxdx=0,证明:在[0,π]内有两个不同的p1,p2,使得f(p1)=f(p2)=0.

证明
记g(x)=∫(0~x)f(x)dx由于f(x)在[0,π]上连续,可知g(x)在[0,π]上可导
易知g(0)=g(π)=0
∫(0~π)f(x)cosxdx=∫(0~π)g'(x)cosxdx=∫(0~π)cosxdg(x)
=g(x)cosx|(0,π)+∫(0~π)g(x)sinxdx=∫(0~π)g(x)sinxdx=0.(*)
若在(0,π)内恒有g(x)sinx>0,则∫(0~π)g(x)sinxdx>0与(*)矛盾
若在(0,π)内恒有g(x)sinx<0,则∫(0~π)g(x)sinxdx<0与(*)矛盾
则必存在一点θ∈(0,π)使得g(θ)sinθ=0,注意到这里sinθ>0有g(θ)=0
对g(x)分别在[0,θ],[θ,π]上运用罗尔定理有
至少存在两点θ1∈(0,θ),θ2∈(θ,π)使得
g'(θ1)=g'(θ2)=0,又g'(x)=f(x)
即f(θ1)=f(θ2)=0,证毕.

有点难啊= =

1.8大锅一个。接收机十几台